Citation: Ghodsieh Bagherzade, Abbas Zali, Arash Shokrolahi. Preparation of aromatic nitriles via direct oxidative conversion of benzyl alcohols, aldehydes and amines with pentylpyridinium tribromide in aqueous NH4OAc[J]. Chinese Chemical Letters, ;2015, 26(5): 603-606. doi: 10.1016/j.cclet.2015.01.009 shu

Preparation of aromatic nitriles via direct oxidative conversion of benzyl alcohols, aldehydes and amines with pentylpyridinium tribromide in aqueous NH4OAc

  • Corresponding author: Abbas Zali, 
  • Received Date: 12 August 2014
    Available Online: 10 December 2014

  • Pentylpyridinium tribromide and aqueous ammonium acetate was used for the rapid oxidative conversion of benzyl alcohols, benzaldehydes and benzyl amines to the corresponding benzonitriles in good to excellent yields. This simple, mild and one-pot system provides easy workup and separation of the products.
  • 加载中
    1. [1]

      [1] J.B. Medwid, R. Paul, J.S. Baker, et al., Preparation of triazolo[1,5-c] pyrimidines as potential antiasthma agents, J. Med. Chem. 33 (1990) 1230-1241.

    2. [2]

      [2] B.D. Judkins, D.G. Allen, T.A. Cook, B. Evans, T.E. Sardharwala, A versatile synthesis of amidines from nitriles via amidoximes, Synth. Commun. 26 (1996) 4351-4367.

    3. [3]

      [3] D. Sriram, P. Yogeeswari, Medicinal Chemistry, Pearson Education, Mü nchen, 2007p. 35.

    4. [4]

      [4] D.T. Mowry, The preparation of nitriles, Chem. Rev. 42 (1948) 189-283.

    5. [5]

      [5] K. Friedrich, K. Wallensfels, Introduction of the cyano group into the molecule, in: Z. Rappoport (Ed.), Chemistry of Cyano Group, Wiley-Inter Science, New York, 1970, p. 67.

    6. [6]

      [6] M. North, A.R. Katritzky, O. Meth-Conn, C.W. Rees, Comprehensive Organic Functional Group Transformations, Pergamon, Oxford, 1995, pp. 617-618.

    7. [7]

      [7] G.D. Diana, D. Cutcliffe, D.L. Volkots, et al., Antipicornavirus activity of tetrazole analogs related to disoxaril, J. Med. Chem. 36 (1993) 3240-3250.

    8. [8]

      [8] M.E. Fabiani, Angiotensin receptor subtypes: novel targets for cardiovascular therapy, Drug News Perspect. 12 (1999) 207-216.

    9. [9]

      [9] M. Chihiro, H. Nagamoto, I. Takemura, et al., Novel thiazole derivatives as inhibitors of superoxide production by human neutrophils: synthesis and structure- activity relationships, J. Med. Chem. 38 (1995) 353-358.

    10. [10]

      [10] I.K. Khanna, R.M. Weier, Y. Yu, et al., 1,2-Diarylimidazoles as potent, cyclooxygenase- 2 selective, and orally active antiinflammatory agents, J. Med. Chem. 40 (1997) 1634-1647.

    11. [11]

      [11] J.S. Miller, J.L. Manson, Designer magnets containing cyanides and nitriles, Acc. Chem. Res. 34 (2001) 563-570.

    12. [12]

      [12] L. Friedman, H. Shechter, Preparation of nitriles from halides and sodium cyanide, an advantageous nucleophilic displacement in dimethyl sulfoxide, J. Org. Chem. 25 (1960) 877-879.

    13. [13]

      [13] I.R. Baxendale, S.V. Ley, F.H. Sneddon, A clean conversion of aldehydes to nitriles using a solid-supported hydrazine, Synlett 5 (2002) 775-777 (references therein).

    14. [14]

      [14] T. Mineno, M. Shinada, K. Watanabe, et al., Highly-efficient conversion of primary amides to nitriles using indium(III) triflate as the catalyst, Int. J. Org. Chem. 4 (2014) 1-6.

    15. [15]

      [15] G.A. Olah, Y.D. Vankar, Improved one-step conversion of aldehydes into nitriles with hydroxylamine in formic acid solution, Synthesis (1978) 702-703.

    16. [16]

      [16] M.N. Rao, P. Kumar, K. Garyali, A new method for the conversion of aldoximes into nitriles with zeolites, Org. Prep. Proced. Int. 21 (1989) 230-232.

    17. [17]

      [17] G.A. Olah, S.C. Narang, A. Garcia-Luma, Sulfuryl chloride fluoride, a mild dehydrating agent in the preparation of nitriles from aldoximes, Synthesis (1980) 659- 660.

    18. [18]

      [18] J.N. Kim, K.H. Chung, E.K. Ryu, Improved dehydration method of aldoximes to nitriles: use of acetonitrile to triphenylphosphine/carbon tetrachloride system, Synth. Commun. 20 (1990) 2785-2788.

    19. [19]

      [19] T.A. Khan, S. Pernucheralathan, H. Ila, H. Junjappa, S,S-Dimethyl dithiocarbonate: a useful reagent for efficient conversion of aldoximes to nitriles, Synlett (2004) 2019-2021.

    20. [20]

      [20] M. Hosseini Sarvari, ZnO/CH3COCl: a new and highly efficient catalyst for dehydration of aldoximes into nitriles under solvent-free condition, Synthesis (2005) 787-790.

    21. [21]

      [21] S.H. Yang, S. Chang, Highly efficient and catalytic conversion of aldoximes to nitriles, Org. Lett. 3 (2001) 4209-4211.

    22. [22]

      [22] K. Tambara, G.D. Pantos, Conversion of aldoximes into nitriles and amides under mild conditions, Org. Biomol. Chem. 11 (2013) 2466-2472.

    23. [23]

      [23] Y. Song, S.D. Zhang, Q. Chen, X.G. Xu, Ac2O/K2CO3/DMSO: an efficient and practical reagent system for the synthesis of nitriles from aldoximes, Tetrahedron Lett. 55 (2014) 639-641.

    24. [24]

      [24] M. Gucma, W.M. Gołębiewski, Convenient conversion of aldoximes into nitriles with N-chlorosuccinimide and pyridine, Synthesis (2008) 1997-1999.

    25. [25]

      [25] R. Rezaei, M. Karami, Microwave promoted rapid dehydration of aldoximes to nitriles using melamine-formaldehyde resin supported sulphuric acid in dry media, Chin. Chem. Lett. 22 (2011) 815-818.

    26. [26]

      [26] R. Ghorbani-Vaghei, L. Shiri, A. Ghorbani-Choghamarani, An efficient, rapid and facile procedure for conversion of aldoximes to nitriles using triphenylphosphine and N-halo sulfonamides, Chin. Chem. Lett. 24 (2013) 1123-1126.

    27. [27]

      [27] N. Mori, H. Togo, Direct oxidative conversion of primary alcohols to nitriles using molecular iodine in ammonia water, Synlett (2005) 1456-1458.

    28. [28]

      [28] L.M. Dornan, Q. Cao, J.C.A. Flanagan, et al., Copper/TEMPO catalysed synthesis of nitriles from aldehydes or alcohols using aqueous ammonia and with air as the oxidant, Chem. Commun. 49 (2013) 6030-6032.

    29. [29]

      [29] C. Tao, F. Liu, Y. Zhu, W. Liu, Z. Cao, Copper-catalyzed aerobic oxidative synthesis of aryl nitriles from benzylic alcohols and aqueous ammonia, Org. Biomol. Chem. 11 (2013) 3349-3354.

    30. [30]

      [30] A. Ghorbani-Choghamarani, M.A. Zolfigol, M. Hajjami, S. Sardari, Direct synthesis of nitriles from alcohols or aldehydes using H5IO6/KI in aqueous ammonia, Synth. Commun. 43 (2013) 52-58.

    31. [31]

      [31] R. Ghorbani-Vaghei, H. Veisi, Poly(N,N'-dichloro-N-ethylbenzene-1,3-disulfonamide) and N,N,N0,N'-tetrachlorobenzene-1,3-disulfonamide as novel reagents for the synthesis of N-chloroamines, nitriles and aldehydes, Synthesis (2009) 945- 950.

    32. [32]

      [32] H. Veisi, R. Ghorbani-Vaghei, Recent progress in the application of N-halo reagents in the synthesis of heterocyclic compounds, Tetrahedron 66 (2010) 7445-7463.

    33. [33]

      [33] A. Misono, T. Osa, S. Koda, The synthesis of nitriles from aldehydes, Bull. Chem. Soc. Jpn. 39 (1966) 854-854.

    34. [34]

      [34] A. Misono, T. Osa, S. Koda, On the formation of benzonitrile from benzaldehyde and ammonia. II. Iodine as an oxidant, Bull. Chem. Soc. Jpn. 40 (1967) 2875- 2884.

    35. [35]

      [35] S. Talukdar, J.L. Hsu, T.C. Chou, J.M. Fang, Direct transformation of aldehydes to nitriles using iodine in ammonia water, Tetrahedron Lett. 42 (2001) 1103-1105.

    36. [36]

      [36] M. Hajjami, A. Ghorbani-Choghamarani, M.A. Zolfigol, F. Gholamian, An efficient and versatile synthesis of aromatic nitriles from aldehydes, Chin. Chem. Lett. 23 (2012) 1323-1326.

    37. [37]

      [37] S. Iida, R. Ohmura, H. Togo, Direct oxidative conversion of alkyl halides into nitriles with molecular iodine and 1,3-diiodo-5,5-dimethylhydantoin in aq ammonia, Tetrahedron 65 (2009) 6257-6262.

    38. [38]

      [38] S. Iida, H. Togo, Direct oxidative conversion of alcohols and amines to nitriles with molecular iodine and DIH in aq NH3, Tetrahedron 63 (2007) 8274-8281.

    39. [39]

      [39] K.R. Reddy, C.U. Maheswari, M. Venkateshwar, S. Prashanthi, M.L. Kantam, Catalytic oxidative conversion of alcohols, aldehydes and amines into nitriles using KI/I2-TBHP system, Tetrahedron Lett. 50 (2009) 2050-2053.

    40. [40]

      [40] H. Veisi, Direct oxidative conversion of alcohols, amines, aldehydes, and benzyl halides into the corresponding nitriles with trichloroisocyanuric acid in aqueous ammonia, Synthesis (2010) 2631-2635.

    41. [41]

      [41] K.N.T. Tseng, A.M. Rizzi, N.K. Szymczak, Oxidant-free conversion of primary amines to nitriles, J. Am. Chem. Soc. 135 (2013) 16352-16355.

    42. [42]

      [42] J. Kim, S.S. Stahl, Cu nitroxyl-catalyzed aerobic oxidation of primary amines into nitriles at room temperature, ACS Catal. 3 (2013) 1652-1656.

    43. [43]

      [43] J. He, K. Yamaguchi, N. Mizuno, Aerobic oxidative transformation of primary azides to nitriles by ruthenium hydroxide catalyst, J. Org. Chem. 76 (2011) 4606- 4610.

    44. [44]

      [44] J.Q. Ye, Z.L. Zhang, Z.G. Zha, Z.Y. Wang, A green and efficient access to aryl nitriles via an electrochemical anodic oxidation, Chin. Chem. Lett. 25 (2014) 1112-1114.

    45. [45]

      [45] T. Schareina, R. Jackstell, T. Schulz, et al., Increasing the scope of palladiumcatalyzed cyanations of aryl chlorides, Adv. Synth. Catal. 351 (2009) 643-648.

    46. [46]

      [46] J.L. Zhang, X.R. Chen, T.J. Hu, et al., Highly efficient Pd-catalyzed cyanation of aryl chlorides and arenesulfonates with potassium ferrocyanide in aqueous media, Catal. Lett. 139 (1/2) (2010) 56-60.

    47. [47]

      [47] Y. Ren, Z. Liu, S. Zhao, et al., Ethylenediamine/Cu(OAc)2 H2O-catalyzed cyanation of aryl halides with K4[Fe(CN)6], Catal. Commun. 10 (2009) 768-771.

    48. [48]

      [48] Y. Suzuki, K. Moriyama, H. Togo, Facile transformation of esters to nitriles, Tetrahedron 67 (2011) 7956-7962.

    49. [49]

      [49] Y. Suzuki, T. Yoshino, K. Moriyama, H. Togo, Direct transformation of N,Ndisubstituted amides and isopropyl esters to nitriles, Tetrahedron 67 (2011) 3809-3814.

    50. [50]

      [50] A. Mekki-Berrada, S. Bennici, J.P. Gillet, et al., Fatty acid methyl esters into nitriles: acid-base properties for enhanced catalysts, J. Catal. 306 (2013) 30-37.

    51. [51]

      [51] Z. Shu, Y. Ye, Y. Deng, Y. Zhang, J. Wang, Palladium(II)-catalyzed direct conversion of methyl arenes into aromatic nitriles, Angew. Chem. Int. Ed. 52 (2013) 10573- 10576.

    52. [52]

      [52] X. Zong, Q.Z. Zheng, N. Jiao, NBS mediated nitriles synthesis through C5C double bond cleavage, Org. Biomol. Chem. 12 (2014) 1198-1202.

    53. [53]

      [53] P.J. Salazar, R. Dorta, Pentylpyridinium tribromide: a vapor pressure free room temperature ionic liquid analogue of bromine, Synlett (2004) 1318-1320.

  • 加载中
    1. [1]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    2. [2]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    3. [3]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    4. [4]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    5. [5]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    6. [6]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    7. [7]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    8. [8]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    9. [9]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    10. [10]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    11. [11]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    12. [12]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    13. [13]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    14. [14]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

Metrics
  • PDF Downloads(0)
  • Abstract views(660)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return