Citation:
Dariush Khalili. Highly effi cient and regioselective thiocyanation of aromatic amines, anisols and activated phenols with H2O2/NH4SCN catalyzed by nanomagnetic Fe3O4[J]. Chinese Chemical Letters,
;2015, 26(5): 547-552.
doi:
10.1016/j.cclet.2015.01.007
-
A new method employing magnetic nanoparticles Fe3O4 as a catalyst and H2O2 as a green oxidant is developed for the oxidative thiocyanation of aromatic amines, anisols and activated phenols with high yields under mild reaction conditions. The catalyst could be easily recovered from the reaction mixture using an external magnet and reused in several reaction cycles without loss of activity.
-
Keywords:
- Arenes,
- Green oxidant,
- Hydrogen peroxide,
- Nanomagnetic Fe3O4,
- NH4SCN,
- Thiocyanation
-
-
-
[1]
[1] (a) Y. Cui, P.E. Floreancig, Synthesis of sulfur-containing heterocycles through oxidative carbon-hydrogen bond functionalization, Org. Lett. 14 (2012) 1720- 1723;
-
[2]
(b) I.P. Beletskaya, V.P. Ananikov, Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions, Chem. Rev. 111 (2011) 1596-1636;
-
[3]
(c) P. Bichler, J. Love, in: A. Vigalok (Ed.), Topics of Organometallic Chemistry, vol. 31, Springer, Heidelberg, 2010, pp. 39-64.
-
[4]
[2] (a) For a review see: R.G. Guy, in: S. Patai (Ed.), The Chemistry of the Cyanates and their Thio Derivatives, Wiley Interscience, New York, 1977, p. 819;
-
[5]
(b) A.W. Erian, S.M. Sherif, The chemistry of thiocyanic esters, Tetrahedron 55 (1999) 7957-8024.
-
[6]
[3] (a) M. Benn, Glucosinolates, Pure Appl. Chem. 49 (1977) 197-210;
-
[7]
(b) A.T. Pham, T. Ichida, W.Y. Yoshida, et al., Two marine sesquiterpene thiocyanates, Tetrahedron Lett. 32 (1991) 4843-4846.
-
[8]
[4] (a) B.L. Leblanc, B.C. Jursic, Preparation of 5-alkylthio and 5-arylthiotetrazoles from thiocyanates using phase transfer catalysis, Synth. Commun. 28 (1998) 3591-3599;
-
[9]
(b) A.A. Newman, Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives, 1st ed., Academic Press, 1975;
-
[10]
(c) D.L. Mackinnon, A.P. Farrel, The effect of 2-(thiocyanomethylthio)benzothiazole on juvenile coho salmon (Oncorhynchus kisutch): sublethal toxicity testing, Environ. Toxicol. Chem. 11 (1992) 1541-1548.
-
[11]
[5] (a) Y.T. Lee, S.Y. Choi, Y.K. Chung, Microwave-assisted palladium-catalyzed regioselective cyanothiolation of alkynes with thiocyanates, Tetrahedron Lett. 48 (2007) 5673-5677;
-
[12]
(b) Z.H. Zhang, L.S. Liebeskind, Palladium-catalyzed, copper(I)-mediated coupling of boronic acids and benzylthiocyanate: a cyanide-free cyanation of boronic acids, Org. Lett. 8 (2006) 4331-4333;
-
[13]
(c) R. Riemschneider, Thiocarbamates and related compounds: X. A new reaction of thiocyanates, J. Am. Chem. Soc. 78 (1956) 844-847;
-
[14]
(d) T. Billard, B.R. Langlois, M. Medebielle, Tetrakis(dimethylamino)ethylene (TDAE) mediated addition of difluoromethyl anions to heteroaryl thiocyanates: a new simple access to heteroaryl-SCF2R derivatives, Tetrahedron Lett. 42 (2001) 3463-3465;
-
[15]
(e) F.D. Toste, F. Laronde, W.J. Still, Thiocyanate as a versatile synthetic unit: efficient conversion of ArSCN to aryl alkyl sulfides and aryl thioesters, Tetrahedron Lett. 36 (1995) 2949-2952;
-
[16]
(f) M.S. Grant, H.R. Snyder, Thiocyanation of indole: some reactions of 3-thiocyanoindole, J. Am. Chem. Soc. 82 (1960) 2742-2744;
-
[17]
(g) Y. Kita, T. Takada, S. Mihara, B.A. Whelan, H. Thoma, Novel and direct nucleophilic sulfenylation and thiocyanation of phenol ethers using a hypervalent iodine(III) reagent, J. Org. Chem. 60 (1995) 7144-7148.
-
[18]
[6] S. Sajjadifar, O. Louie, Regioselective thiocyanation of aromatic and heteroaromatic compounds by using boron sulfonic acid as a new, efficient, and cheap catalyst in water, J. Chem. (2013), article ID: 674946.
-
[19]
[7] V.A. Patapov, K.A. Volkova, D.A. Malinovich, et al., Thiocyanation of 4,5,6,7- tetrahydroindole, Russ. J. Org. Chem. 49 (2013) 619-620.
-
[20]
[8] M.A. Karimi Zarchi, N. Ebrahimi, An efficient and simple method for diazotization- thiocyanation of aryl amine using cross-linked poly (4-vinylpyridine) supported thiocyanate ion, Phosphorus Sulfur Silicon Relat. Elem. 187 (2012) 1226-1235.
-
[21]
[9] (a) M.A. Zolfigol, A. Khazaei, M. Mokhlesi, et al., Heterogeneous and catalytic thiocyanation of aromatic compounds in aqueous media, Phosphorus Sulfur Silicon Relat. Elem. 187 (2012) 295-304;
-
[22]
(b) A. Khazaei, M.A. Zolfigol, M. Mokhlesi, F. Derakhshan Panah, S. Sajadifar, Simple and highly efficient catalytic thiocyanation of aromatic compounds in aqueous media, Helv. Chim. Acta 95 (2012) 106-114;
-
[23]
(c) A. Khazaei, M.A. Zolfigol, M. Safaiee, et al., Silica-bonded vanadic acid[SiO2-VO(OH)2] as a heterogeneous and recyclable catalyst for thiocyanation of organic compounds in aqueous media at room temperature, Catal. Commun. 26 (2012) 34-38.
-
[24]
[10] L. Wu, S. Chao, X. Wang, F. Yan, Poly[4-diacetoxyiodo] styrene-promoted thiocyanation of aromatic ethers, anilines, and indoles, Phosphorus Sulfur Silicon Relat. Elem. 186 (2011) 304-310.
-
[25]
[11] Y.L.N. Murthy, B. Govindh, B.S. Diwakar, K. Nagalakshmi, R. Venu, Microwaveassisted neat reaction technology for regioselective thiocyanation of substituted anilines and indoles in solid media, J. Iran. Chem. Soc. 8 (2011) 292-297.
-
[26]
[12] O. Parkash, H. Kaur, R. Pundeer, R.S. Dhillon, S.P. Singh, An improved iodine(III) mediated method for thiocyanation of 2-arylindan-1,3-diones, phenols, and anilines, Synth. Commun. 33 (2003) 4037-4042.
-
[27]
[13] X.Q. Pan, M.Y. Lei, J.P. Zou, W. Zhang, Mn(OAc)3-promoted regioselective free radical thiocyanation of indoles and anilines, Tetrahedron Lett. 50 (2009) 347-349.
-
[28]
[14] (a) H.R. Memarian, I. Mohammadpoor-Baltork, K. Nikoofar, DDQ-promoted thiocyanation of aromatic and heteroaromatic compounds, Can. J. Chem. 85 (2007) 930-937;
-
[29]
(b) H.R. Memraian, I. Mohammadpoor-Baltork, K. Nikoofar, Ultrasound-assisted thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and DDQ, Ultrason. Sonochem. 15 (2008) 456-462.
-
[30]
[15] (a) L. Fotouhi, K. Nikoofar, Electrochemical thiocyanation of nitrogen-containing aromatic and heteroaromatic compounds, Tetrahedron Lett. 54 (2013) 2903- 2905;
-
[31]
(b) A. Gitkis, J.Y. Becker, A selective one-pot electrochemical thiocyanation of methoxybenzene (anisole), Electroanal. Chem. 593 (2006) 29-33;
-
[32]
(c) A. Gitkis, J.Y. Becker, Anodic thiocyanation of mono- and disubstituted aromatic compounds, Electrochim. Acta 55 (2010) 5854-5859.
-
[33]
[16] B. Akhlaghinia, A.R. Pourali, M. Rahmani, Efficient and novel method for thiocyanation of aromatic compounds using trichloroisocyanuric acid/ammonium thiocyanate/wet SiO2, Synth. Commun. 42 (2012) 1184.
-
[34]
[17] (a) X.F. Wu, A. Petrosyan, T.V. Ghochikyan, A.S. Saghyan, P. Langer, Metal-free oxidation of benzyl amines to imines, Tetrahedron Lett. 54 (2013) 3158-3159;
-
[35]
(b) R. Rajabi, A. Pineda, S. Naserian, et al., Aqueous oxidation of alcohols catalysed by recoverable iron oxide nanoparticles supported on aluminosilicates, Green Chem. 15 (2013) 1232-1237;
-
[36]
(c) L. Bedrač, J. Iskra, Iodine(I) reagents in hydrochloric acid-catalyzed oxidative iodination of aromatic compounds by hydrogen peroxide and iodine, Adv. Synth. Catal. 355 (2013) 1243-1248;
-
[37]
(d) A. Rostami, Y. Navasi, D. Moradi, A. Ghorbani-Choghamarani, DABCO tribromide immobilized on magnetic nanoparticle as a recyclable catalyst for the chemoselective oxidation of sulfide using H2O2 under metal- and solvent-free conditions, Catal. Commun. 43 (2014) 16-20;
-
[38]
(e) J. Ju, Y.J. Li, J.R. Gao, et al., High selectively bromination of toluene derivatives by the H2O2-HBr system, Chin. Chem. Lett. 22 (2011) 382-384;
-
[39]
(f) H.Y. Guo, J.C. Li, Y.L. Sheng, A simple and efficient synthesis of 2-substituted benzothiazoles catalysed by H2O2/HCl, Chin. Chem. Lett. 20 (2009) 1408-1410.
-
[40]
[18] (a) Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys. 36 (2003) R167-R181;
-
[41]
(b) A.K. Gupta, A.S.G. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture, J. Mater. Sci. Mater. Med. 15 (2004) 493-496;
-
[42]
(c) T. Neuberger, B. Schoepf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater. 293 (2005) 483-496.
-
[43]
[19] (a) V. Polshettiwar, R. Luque, A. Fihri, et al., Magnetically recoverable nanocatalysts, Chem. Rev. 111 (2011) 3036-3075;
-
[44]
(b) Y. Li, Y.J. Kim, A.Y. Kim, et al., Highly stable and magnetically recyclable mesoporous silica spheres embedded with FeCo/graphitic shell nanocrystals for supported catalysts, Chem. Mater. 23 (2011) 5398-5403;
-
[45]
(c) J.M. Yan, X.B. Zhang, T. Akita, M. Haruta, Q. Xu, One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane, J. Am. Chem. Soc. 132 (2010) 5326-5327;
-
[46]
(d) N. Panda, A.K. Jena, S. Mohapatra, Heterogeneous magnetic catalyst for S-arylation reactions, Appl. Catal A: Gen. 433 (2012) 258-264;
-
[47]
(e) B. Karami, S.J. Hoseini, S. Nikoseresht, S. Khodabakhshi, Fe3O4 nanoparticles: a powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes, Chin. Chem. Lett. 23 (2012) 173-176.
-
[48]
[20] (a) C. Yang, J. Wu, Y. Hou, Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications, Chem. Commun. 47 (2011) 5130-5141;
-
[49]
(b) D. Cantillo, M. Mirhosseini Moghaddam, C.O. Kappe, Hydrazine-mediated reduction of nitro and azide functionalities catalyzed by highly active and reusable magnetic iron oxide nanocrystals, J. Org. Chem. 78 (2013) 4530-4542;
-
[50]
(c) T. Alishiri, H.A. Oskooei, M.M. Heravi, Fe3O4 nanoparticles as an efficient and magnetically recoverable catalyst for the synthesis of α,β-unsaturated heterocyclic and cyclic ketones under solvent-free conditions, Synth. Commun. 43 (2014) 3357-3362;
-
[51]
(d) K. Kamal, S.M. Sajadi, An efficient synthesis of thiotetrazoles using Fe3O4 nanoparticles as a magnetically recoverable and reusable catalyst, Lett. Org. Chem. 10 (2013) 688-692.
-
[52]
[21] (a) N. Iranpoor, H. Firouzabadi, D. Khalili, R. Shahin, A new application for diethyl azodicarboxylate: efficient and regioselective thiocyanation of aromatics amines, Tetrahedron Lett. 51 (2010) 3508-3510;
-
[53]
(b) N. Iranpoor, H. Firouzabadi, R. Shahin, D. Khalili, 2,2'-Azobenzthiazole as a new recyclable oxidant for heterogeneous thiocyanation of aromatic compounds with ammonium thiocyanate, Synth. Commun. 42 (2012) 2040-2047.
-
[54]
[22] For the preparation of nanomagnetic Fe3O4, see: V. Polshettiwar, B. Baruwati, R.S. Varma, Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol, Green Chem. 11 (2009) 127-131.
-
[55]
[23] H. Sharghi, S. Ebrahimpourmoghaddam, M.M. Doroodmand, Facile synthesis of 5-substituted-1H-tetrazoles and 1-substituted-1H-tetrazoles catalyzed by recyclable 4'-phenyl-2,2':6',2"-terpyridine copper (II) complex immobilized onto activated multi-walled carbon nanotubes, J. Organomet. Chem. 738 (2013) 41-48.
-
[56]
[24] (a) G. Wu, Q. Liu, Y. Shen, W. Wu, L. Wu, Regioselective thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and oxone, Tetrahedron Lett. 46 (2005) 5831-5834;
-
[57]
(b) U.S. Mahajan, K.G. Akamanchi, Facile method for thiocyanation of activated arenes using iodic acid in combination with ammonium thiocyanate, Synth. Commun. 39 (2009) 2674-2682;
-
[58]
(c) B. Das, A.S. Kumar, Efficient thiocyanation of indoles using para-toluene sulfonic acid, Synth. Commun. 40 (2010) 337-341;
-
[59]
(d) A. Shuji, M. Egi, K. Lio, et al., An efficient p-thiocyanation of phenols and naphtols using a reagent combination of phenyliodine dichloride and lead(II) thiocyanate, Chem. Pharm. Bull. 45 (1997) 1887-1890.
-
[60]
[25] (a) M.A. Zolfigol, V. Khakyzadeh, A.H. Moosavi-Zare, et al., Nano-Fe3O4/O2: green, magnetic and reusable catalytic system for the synthesis of benzimidazoles, S. Afr. J. Chem. 65 (2012) 280;
-
[61]
(b) R. Parella, N. Srinivasarao, A. Babu, Magnetic nano Fe3O4 and CuFe2O4 as heterogeneous catalysts: a green method for the stereo- and regioselective reactions of epoxides with indoles/pyrroles, Catal. Commun. 29 (2012) 118-121;
-
[62]
(c) B. Karami, S.J. Hoseini, S. Nikoseresht, S. Khodabakhshi, Fe3O4 nanoparticles: a powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes, Chin. Chem. Lett. 23 (2012) 173-176;
-
[63]
(d) M.M. Mojtahedi, M.S. Abaee, A. Rajabi, P. Mahmoodi, S. Bagherpoor, Recyclable superparamagnetic Fe3O4 nanoparticles for efficient catalysis of thiolysis of epoxides, J. Mol. Catal. A: Chem. 361 (2012) 68-71;
-
[64]
(e) R. Cano, M. Yus, D.J. Ramon, Catalyzed addition of acid chlorides to alkynes by unmodified nano-powder magnetite: synthesis of chlorovinyl ketones, furans, and related cyclopentenone derivatives, Tetrahedron 69 (2013) 7056-7065.
-
[65]
[26] (a) I.R.Wilson, G.M. Harris, The oxidation of thiocyanate ion by hydrogen peroxide: I. The pH-independent reaction, J. Am. Chem. Soc. 82 (1960) 4515-4517;
-
[66]
(b) J.N. Figlar, D.M. Stanbury, Thiocyanogen as an intermediate in the oxidation of thiocyanate by hydrogen peroxide in acidic aqueous solution, Inorg. Chem. 39 (2000) 5089-5094;
-
[67]
(c) J.J. Barnett, D.M. Stanbury, Formation of trithiocyanate in the oxidation of aqueous thiocyanate, Inorg. Chem. 41 (2002) 164-166;
-
[68]
(d) P. Nagy, K. Lemma, M.T. Ashby, Kinetics and mechanism of the comproportionation of hypothiocyanous acid and thiocyanate to give thiocyanogen in acidic aqueous solution, Inorg. Chem. 46 (2007) 285-292.
-
[1]
-
-
-
[1]
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
-
[2]
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
-
[3]
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
-
[4]
Zhaomin Tang , Qian He , Jianren Zhou , Shuang Yan , Li Jiang , Yudong Wang , Chenxing Yao , Huangzhao Wei , Keda Yang , Jiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742
-
[5]
Changzhu Huang , Wei Dai , Shimao Deng , Yixin Tian , Xiaolin Liu , Jia Lin , Hong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429
-
[6]
Yuan CONG , Yunhao WANG , Wanping LI , Zhicheng ZHANG , Shuo LIU , Huiyuan GUO , Hongyu YUAN , Zhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219
-
[7]
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
-
[8]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[9]
Xun Zhu , Chenchen Zhang , Yingying Li , Yin Lu , Na Huang , Dawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753
-
[10]
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
-
[11]
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
-
[12]
Linping Li , Junhui Su , Yanping Qiu , Yangqin Gao , Ning Li , Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472
-
[13]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[14]
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
-
[15]
Liyang Qin , Luna Wu , Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545
-
[16]
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
-
[17]
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
-
[18]
Tiantian Li , Ruochen Jin , Bin Wu , Dongming Lan , Yunjian Ma , Yonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701
-
[19]
Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391
-
[20]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(704)
- HTML views(15)