Citation:
Chao Han, Yan-Chun Guo, Dan-Dan Wang, Xing-Jie Dai, Feng-Juan Wu, Huan-Fei Liu, Gui-Fu Dai, Jing-Chao Tao. Novel pyrazole fused heterocyclic ligands: Synthesis, characterization, DNA binding/cleavage activity and anti-BVDV activity[J]. Chinese Chemical Letters,
;2015, 26(5): 534-538.
doi:
10.1016/j.cclet.2015.01.006
-
A series of novel pyrazole fused heterocyclic derivatives were synthesized via a two-step procedure or a one-pot two step method, and their catalytic DNA cleavage abilities and anti-BVDV activities were also evaluated. The results obtained indicated that compounds 3b-3c could catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) to nicked DNA under physiological conditions with high yields via a hydrolytic mechanism. The studies on anti-viral activities against bovine viral diarrhea virus (BVDV) demonstrated that some of the pyrazole derivatives showed pronounced anti-BVDV activity with interesting EC50 values and no significant cytotoxicity. Among them, compound 3l showed the highest antiviral activity (EC50 = 0.12 μmol/L) and was 10 fold more than that of the positive control ribavirin (EC50 = 1.3 μmol/L), which provided a potential candidate for the development of anti-BVDV agents.
-
Keywords:
- Synthesis,
- Tetramic acids,
- DNA binding/cleavage,
- Pyrazole derivatives,
- Anti-BVDV
-
-
-
[1]
[1] F. Mancin, P. Scrimin, P. Tecilla, U. Tonellato, Artificial metallonucleases, Chem. Commun. 20 (2005) 2540-2548.
-
[2]
[2] C.J. Thomas, M.M. McCormick, C. Vialas, et al., Alteration of the selectivity of DNA cleavage by a deglycobleomycin analogue containing a trithiazole moiety, J. Am. Chem. Soc. 124 (2002) 3875-3884.
-
[3]
[3] A. Minnock, L.S. Lin, J. Morgan, et al., Sequence-specific DNA cleavage by dipeptides disubstituted with chlorambucil and 2,6-dimethoxyhydroquinone-3-mercaptoacetic acid, Bioconjug. Chem. 12 (2001) 870-882.
-
[4]
[4] C.Q. Zhou, Y.L. Lin, J.X. Chen, et al., Facile synthesis of a dimeric dipyrrolepolyamide and synergetic DNA-cleaving activity of its Cu(II) complex, Bioorg. Med. Chem. Lett. 22 (2012) 5853-5856.
-
[5]
[5] M. Pitié, J.D.V. Horn, D. Brion, C.J. Burrows, B. Meunier, Targeting the DNA cleavage activity of copper phenanthroline and clip-phen to A.T. tracts via linkage to a poly- N-methylpyrrole, Bioconjug. Chem. 11 (2000) 892-900.
-
[6]
[6] M. Pitié, C.J. Burrows, B. Meunier, Mechanisms of DNA cleavage by copper complexes of 3-clip-phen and of its conjugate with a distamycin analogue, Nucleic Acids Res. 28 (2000) 4856-4864.
-
[7]
[7] (a) S. Roy, P.U. Maheswari, M. Lutz, et al., DNA cleavage and antitumour activity of platinum(II) and copper(II) compounds derived from 4-methyl-2-N-(2-pyridylmethyl) aminophenol: spectroscopic, electrochemical and biological investigation, Dalton Trans. 48 (2009) 10846-10860;
-
[8]
(b) S. Gama, F. Mendes, F. Marques, et al., Copper(II) complexes with tridentate pyrazole-based ligands: synthesis, characterization. DNA cleavage activity and cytotoxicity, J. Inorg. Biochem. 105 (2011) 637-644.
-
[9]
[8] (a) Y. Aiba, J. Sumaoka, M. Komiyama, Artificial DNA cutters for DNA manipulation and genome engineering, Chem. Soc. Rev. 40 (2011) 5657-5668;
-
[10]
(b) J.H. Wen, C.Y. Li, Z.R. Geng, X.Y. Ma, Z.L. Wang, A potent antitumor Zn2+ tetraazamacrocycle complex targeting DNA: the fluorescent recognition, interaction and apoptosis studies, Chem. Commun. 47 (2011) 11330-11332.
-
[11]
[9] (a) L. Tjioe, J. Brugger, B. Graham, L. Spiccia, Synthesis, structure, and DNA cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands featuring pairs of guanidine pendants, Inorg. Chem. 50 (2011) 621-635;
-
[12]
(b) R. Bonomi, P. Scrimin, F. Mancin, Phosphate diesters cleavage mediated by Ce(IV) complexes self-assembled on gold nanoparticles, Org. Biomol. Chem. 8 (2010) 2622-2626.
-
[13]
[10] K. Sako, H. Aoyama, S. Sato, Y. Hashimoto, M. Baba, Gamma-carboline derivatives with anti-bovine viral diarrhea virus (BVDV) activity, Bioorg. Med. Chem. 16 (2008) 3780-3790.
-
[14]
[11] (a) T.J. Liang, B. Rehermann, L.B. Seeff, J.H. Hoofnagle, Pathogenesis, natural history, treatment, and prevention of hepatitis C, Ann. Intern. Med. 132 (2000) 296-305;
-
[15]
(b) P.H. Hayashi, A.M. Di Bisceglie, The progression of hepatitis B- and C-infections to chronic liver disease and hepatocellular carcinoma: epidemiology and pathogenesis, Med. Clin. N. Am. 89 (2005) 371-389.
-
[16]
[12] (a) D.Z. Chen, J.D. Jiang, K.Q. Zhang, et al., Evaluation of anti-HCV activity and SAR study of (+)-lycoricidine through targeting of host heat-stress cognate 70 (Hsc70), Bioorg. Med. Chem. Lett. 23 (2013) 2679-2682;
-
[17]
(b) H. Aoyama, K. Sugita, M. Nakamura, et al., Fused heterocyclic amido compounds as anti-hepatitis C virus agents, Bioorg. Med. Chem. 19 (2011) 2675-2687.
-
[18]
[13] (a) H.W. Xu, L.J. Zhao, H.F. Liu, et al., Synthesis and anti-BVDV activity of novel dsultones in vitro: implications for HCV therapies, Bioorg. Med. Chem. Lett. 24 (2014) 2388-2391;
-
[19]
(b) M.M. Liu, L. Zhou, P.L. He, et al., Discovery of flavonoid derivatives as anti-HCV agents via pharmacophore search combining molecular docking strategy, Eur. J. Med. Chem. 52 (2012) 33-43.
-
[20]
[14] (a) V.E. Buckwold, J. Wei, M. Wenzel-Mathers, J. Russell, Synergistic in vitro interactions between alpha interferon and ribavirin against bovine viral diarrhea virus and yellow fever virus as surrogate models of hepatitis C virus replication, Antimicrob. Agents Chemother. 47 (2003) 2293-2298;
-
[21]
(b) K. Yanagida, C. Baba, M. Baba, Inhibition of bovine viral diarrhea virus (BVDV) by mizoribine: synergistic effect of combination with interferon-alpha, Antiviral Res. 64 (2004) 195-201.
-
[22]
[15] (a) S. Ningaiah, U.K. Bhadraiah, S.D. Doddaramappa, S. Keshavamurthy, C. Javarasetty, Novel pyrazole integrated 1,3,4-oxadiazoles: synthesis, characterization and antimicrobial evaluation, Bioorg. Med. Chem. Lett. 24 (2014) 245-248;
-
[23]
(b) J. Regan, S. Breitfelder, P. Cirillo, et al., Pyrazole urea-based inhibitors of p38 MAP kinase: from lead compound to clinical candidate, J. Med. Chem. 45 (2002) 2994-3008.
-
[24]
[16] (a) B.P. Bandgar, H.V. Chavan, L.K. Adsul, et al., Design, synthesis, characterization and biological evaluation of novel pyrazole integrated benzophenones, Bioorg, Med. Chem. Lett. 23 (2013) 912-916;
-
[25]
(b) N.C. Desai, K.M. Rajpara, V.V. Joshi, Synthesis of pyrazole encompassing 2- pyridone derivatives as antibacterial agents, Bioorg. Med. Chem. Lett. 23 (2013) 2714-2717.
-
[26]
[17] I.K. Sorokina, V.A. Parshin, V.V. Asnina, R.B. Parimbetova, V.G. Granik, Novel 2- pyrrolidone derivatives closely related to piracetam: synthesis and pharmacological study, Khim. Farm. Zh. 26 (1992) 41-44.
-
[27]
[18] E.M. Gsiusky, S. Lee, C.W. Sigle, D.S. Duch, C.A. Nichol, Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine, J. Med. Chem. 23 (1980) 327-329.
-
[28]
[19] M.N. Nasr, M.M. Gineinah, Pyrido[2,3-d]pyrimidines and pyrimido[50,40:5,6]pyrido[2,3-d]pyramidines as new antiviral agents: synthesis and biological activity, Arch. Pharm. Med. Chem. 335 (2002) 289-295.
-
[29]
[20] J. Quiroga, J. Portilla, H. Serrane, et al., Regioselective synthesis of fused benzopyrazolo[3,4-b]quinolines under solvent-free conditions, Tetrahedron Lett. 48 (2007) 1987-1990.
-
[30]
[21] (a) C. Han, T. Zhang, A.Q. Zhang, et al., Efficient catalyst-free one-pot threecomponent synthesis of novel spirooxindole derivatives and their cytotoxic activities, Synthesis 46 (2014) 1389-1398;
-
[31]
(b) B.J.L. Royles, Naturally occurring tetramic acids: structure, isolation, and synthesis, Chem. Rev. 95 (1995) 1981-2001.
-
[32]
[22] R.N. Lacey, Derivatives of acetoacetic acid. Part VII. α-acetyltetramic acids, J. Chem. Soc. (1954) 850-854.
-
[33]
[23] S. Gelinx, B. Chantegrel, M. Chabannet, Synthesis of 4-oxo-1,4-dihydro-6Hfuro[3,4-c]pyrazole and 4-oxo-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole systems from acyl tetronic and tetramic acids, Synth. Commun. 12 (1982) 431-437.
-
[1]
-
-
-
[1]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[2]
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
-
[3]
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
-
[4]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[5]
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
-
[6]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[7]
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
-
[8]
Xiang Huang , Dongzhen Xu , Yang Liu , Xia Huang , Yangfan Wu , Dongmei Fang , Bing Xia , Wei Jiao , Jian Liao , Min Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665
-
[9]
Min-Hang Zhou , Jun Jiang , Wei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446
-
[10]
Shuying Li , Weiwei ZhuGe , Xuan Sun , Chongzhen Sun , Zhaojun Liu , Chenghe Xiong , Min Xiao , Guofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089
-
[11]
Yulin Mao , Jingyu Ma , Jiecheng Ji , Yuliang Wang , Wanhua Wu , Cheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927
-
[12]
Bairu Meng , Zongji Zhuo , Han Yu , Sining Tao , Zixuan Chen , Erik De Clercq , Christophe Pannecouque , Dongwei Kang , Peng Zhan , Xinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827
-
[13]
Zhiwei Chen , Heyun Sheng , Xue Li , Menghan Chen , Xin Li , Qiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937
-
[14]
Ao Sun , Zipeng Li , Shuchun Li , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972
-
[15]
Xiaoyao Ma , Jinling Zhang , Ge Fang , He Gao , Jie Gao , Li Fu , Yuanyuan Hou , Gang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823
-
[16]
Ping Sun , Yuanqin Huang , Shunhong Chen , Xining Ma , Zhaokai Yang , Jian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005
-
[17]
Huimin Luan , Qinming Wu , Jianping Wu , Xiangju Meng , Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252
-
[18]
Hang Wang , Qi Wang , Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437
-
[19]
Zhaojun Liu , Zerui Mu , Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156
-
[20]
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(622)
- HTML views(20)