Citation: Chao Han, Yan-Chun Guo, Dan-Dan Wang, Xing-Jie Dai, Feng-Juan Wu, Huan-Fei Liu, Gui-Fu Dai, Jing-Chao Tao. Novel pyrazole fused heterocyclic ligands: Synthesis, characterization, DNA binding/cleavage activity and anti-BVDV activity[J]. Chinese Chemical Letters, ;2015, 26(5): 534-538. doi: 10.1016/j.cclet.2015.01.006 shu

Novel pyrazole fused heterocyclic ligands: Synthesis, characterization, DNA binding/cleavage activity and anti-BVDV activity

  • Corresponding author: Gui-Fu Dai,  Jing-Chao Tao, 
  • Received Date: 6 November 2014
    Available Online: 12 December 2014

    Fund Project:

  • A series of novel pyrazole fused heterocyclic derivatives were synthesized via a two-step procedure or a one-pot two step method, and their catalytic DNA cleavage abilities and anti-BVDV activities were also evaluated. The results obtained indicated that compounds 3b-3c could catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) to nicked DNA under physiological conditions with high yields via a hydrolytic mechanism. The studies on anti-viral activities against bovine viral diarrhea virus (BVDV) demonstrated that some of the pyrazole derivatives showed pronounced anti-BVDV activity with interesting EC50 values and no significant cytotoxicity. Among them, compound 3l showed the highest antiviral activity (EC50 = 0.12 μmol/L) and was 10 fold more than that of the positive control ribavirin (EC50 = 1.3 μmol/L), which provided a potential candidate for the development of anti-BVDV agents.
  • 加载中
    1. [1]

      [1] F. Mancin, P. Scrimin, P. Tecilla, U. Tonellato, Artificial metallonucleases, Chem. Commun. 20 (2005) 2540-2548.

    2. [2]

      [2] C.J. Thomas, M.M. McCormick, C. Vialas, et al., Alteration of the selectivity of DNA cleavage by a deglycobleomycin analogue containing a trithiazole moiety, J. Am. Chem. Soc. 124 (2002) 3875-3884.

    3. [3]

      [3] A. Minnock, L.S. Lin, J. Morgan, et al., Sequence-specific DNA cleavage by dipeptides disubstituted with chlorambucil and 2,6-dimethoxyhydroquinone-3-mercaptoacetic acid, Bioconjug. Chem. 12 (2001) 870-882.

    4. [4]

      [4] C.Q. Zhou, Y.L. Lin, J.X. Chen, et al., Facile synthesis of a dimeric dipyrrolepolyamide and synergetic DNA-cleaving activity of its Cu(II) complex, Bioorg. Med. Chem. Lett. 22 (2012) 5853-5856.

    5. [5]

      [5] M. Pitié, J.D.V. Horn, D. Brion, C.J. Burrows, B. Meunier, Targeting the DNA cleavage activity of copper phenanthroline and clip-phen to A.T. tracts via linkage to a poly- N-methylpyrrole, Bioconjug. Chem. 11 (2000) 892-900.

    6. [6]

      [6] M. Pitié, C.J. Burrows, B. Meunier, Mechanisms of DNA cleavage by copper complexes of 3-clip-phen and of its conjugate with a distamycin analogue, Nucleic Acids Res. 28 (2000) 4856-4864.

    7. [7]

      [7] (a) S. Roy, P.U. Maheswari, M. Lutz, et al., DNA cleavage and antitumour activity of platinum(II) and copper(II) compounds derived from 4-methyl-2-N-(2-pyridylmethyl) aminophenol: spectroscopic, electrochemical and biological investigation, Dalton Trans. 48 (2009) 10846-10860;

    8. [8]

      (b) S. Gama, F. Mendes, F. Marques, et al., Copper(II) complexes with tridentate pyrazole-based ligands: synthesis, characterization. DNA cleavage activity and cytotoxicity, J. Inorg. Biochem. 105 (2011) 637-644.

    9. [9]

      [8] (a) Y. Aiba, J. Sumaoka, M. Komiyama, Artificial DNA cutters for DNA manipulation and genome engineering, Chem. Soc. Rev. 40 (2011) 5657-5668;

    10. [10]

      (b) J.H. Wen, C.Y. Li, Z.R. Geng, X.Y. Ma, Z.L. Wang, A potent antitumor Zn2+ tetraazamacrocycle complex targeting DNA: the fluorescent recognition, interaction and apoptosis studies, Chem. Commun. 47 (2011) 11330-11332.

    11. [11]

      [9] (a) L. Tjioe, J. Brugger, B. Graham, L. Spiccia, Synthesis, structure, and DNA cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands featuring pairs of guanidine pendants, Inorg. Chem. 50 (2011) 621-635;

    12. [12]

      (b) R. Bonomi, P. Scrimin, F. Mancin, Phosphate diesters cleavage mediated by Ce(IV) complexes self-assembled on gold nanoparticles, Org. Biomol. Chem. 8 (2010) 2622-2626.

    13. [13]

      [10] K. Sako, H. Aoyama, S. Sato, Y. Hashimoto, M. Baba, Gamma-carboline derivatives with anti-bovine viral diarrhea virus (BVDV) activity, Bioorg. Med. Chem. 16 (2008) 3780-3790.

    14. [14]

      [11] (a) T.J. Liang, B. Rehermann, L.B. Seeff, J.H. Hoofnagle, Pathogenesis, natural history, treatment, and prevention of hepatitis C, Ann. Intern. Med. 132 (2000) 296-305;

    15. [15]

      (b) P.H. Hayashi, A.M. Di Bisceglie, The progression of hepatitis B- and C-infections to chronic liver disease and hepatocellular carcinoma: epidemiology and pathogenesis, Med. Clin. N. Am. 89 (2005) 371-389.

    16. [16]

      [12] (a) D.Z. Chen, J.D. Jiang, K.Q. Zhang, et al., Evaluation of anti-HCV activity and SAR study of (+)-lycoricidine through targeting of host heat-stress cognate 70 (Hsc70), Bioorg. Med. Chem. Lett. 23 (2013) 2679-2682;

    17. [17]

      (b) H. Aoyama, K. Sugita, M. Nakamura, et al., Fused heterocyclic amido compounds as anti-hepatitis C virus agents, Bioorg. Med. Chem. 19 (2011) 2675-2687.

    18. [18]

      [13] (a) H.W. Xu, L.J. Zhao, H.F. Liu, et al., Synthesis and anti-BVDV activity of novel dsultones in vitro: implications for HCV therapies, Bioorg. Med. Chem. Lett. 24 (2014) 2388-2391;

    19. [19]

      (b) M.M. Liu, L. Zhou, P.L. He, et al., Discovery of flavonoid derivatives as anti-HCV agents via pharmacophore search combining molecular docking strategy, Eur. J. Med. Chem. 52 (2012) 33-43.

    20. [20]

      [14] (a) V.E. Buckwold, J. Wei, M. Wenzel-Mathers, J. Russell, Synergistic in vitro interactions between alpha interferon and ribavirin against bovine viral diarrhea virus and yellow fever virus as surrogate models of hepatitis C virus replication, Antimicrob. Agents Chemother. 47 (2003) 2293-2298;

    21. [21]

      (b) K. Yanagida, C. Baba, M. Baba, Inhibition of bovine viral diarrhea virus (BVDV) by mizoribine: synergistic effect of combination with interferon-alpha, Antiviral Res. 64 (2004) 195-201.

    22. [22]

      [15] (a) S. Ningaiah, U.K. Bhadraiah, S.D. Doddaramappa, S. Keshavamurthy, C. Javarasetty, Novel pyrazole integrated 1,3,4-oxadiazoles: synthesis, characterization and antimicrobial evaluation, Bioorg. Med. Chem. Lett. 24 (2014) 245-248;

    23. [23]

      (b) J. Regan, S. Breitfelder, P. Cirillo, et al., Pyrazole urea-based inhibitors of p38 MAP kinase: from lead compound to clinical candidate, J. Med. Chem. 45 (2002) 2994-3008.

    24. [24]

      [16] (a) B.P. Bandgar, H.V. Chavan, L.K. Adsul, et al., Design, synthesis, characterization and biological evaluation of novel pyrazole integrated benzophenones, Bioorg, Med. Chem. Lett. 23 (2013) 912-916;

    25. [25]

      (b) N.C. Desai, K.M. Rajpara, V.V. Joshi, Synthesis of pyrazole encompassing 2- pyridone derivatives as antibacterial agents, Bioorg. Med. Chem. Lett. 23 (2013) 2714-2717.

    26. [26]

      [17] I.K. Sorokina, V.A. Parshin, V.V. Asnina, R.B. Parimbetova, V.G. Granik, Novel 2- pyrrolidone derivatives closely related to piracetam: synthesis and pharmacological study, Khim. Farm. Zh. 26 (1992) 41-44.

    27. [27]

      [18] E.M. Gsiusky, S. Lee, C.W. Sigle, D.S. Duch, C.A. Nichol, Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine, J. Med. Chem. 23 (1980) 327-329.

    28. [28]

      [19] M.N. Nasr, M.M. Gineinah, Pyrido[2,3-d]pyrimidines and pyrimido[50,40:5,6]pyrido[2,3-d]pyramidines as new antiviral agents: synthesis and biological activity, Arch. Pharm. Med. Chem. 335 (2002) 289-295.

    29. [29]

      [20] J. Quiroga, J. Portilla, H. Serrane, et al., Regioselective synthesis of fused benzopyrazolo[3,4-b]quinolines under solvent-free conditions, Tetrahedron Lett. 48 (2007) 1987-1990.

    30. [30]

      [21] (a) C. Han, T. Zhang, A.Q. Zhang, et al., Efficient catalyst-free one-pot threecomponent synthesis of novel spirooxindole derivatives and their cytotoxic activities, Synthesis 46 (2014) 1389-1398;

    31. [31]

      (b) B.J.L. Royles, Naturally occurring tetramic acids: structure, isolation, and synthesis, Chem. Rev. 95 (1995) 1981-2001.

    32. [32]

      [22] R.N. Lacey, Derivatives of acetoacetic acid. Part VII. α-acetyltetramic acids, J. Chem. Soc. (1954) 850-854.

    33. [33]

      [23] S. Gelinx, B. Chantegrel, M. Chabannet, Synthesis of 4-oxo-1,4-dihydro-6Hfuro[3,4-c]pyrazole and 4-oxo-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole systems from acyl tetronic and tetramic acids, Synth. Commun. 12 (1982) 431-437.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    3. [3]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    4. [4]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    5. [5]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    8. [8]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    9. [9]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    10. [10]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    11. [11]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    12. [12]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    13. [13]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    14. [14]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    15. [15]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    16. [16]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    17. [17]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    18. [18]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    19. [19]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    20. [20]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

Metrics
  • PDF Downloads(0)
  • Abstract views(622)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return