Citation: Hua Nie, Yi Cheng, Pin-Jing Zheng, Li-Hua Luo, Sheng-Yuan Zhang. Lipase-catalyzed synthesis of novel galactosylated cholesterol[J]. Chinese Chemical Letters, ;2015, 26(5): 543-546. doi: 10.1016/j.cclet.2015.01.005 shu

Lipase-catalyzed synthesis of novel galactosylated cholesterol

  • Corresponding author: Yi Cheng, 
  • Received Date: 31 January 2014
    Available Online: 19 December 2014

    Fund Project: This work was financially supported by the Ph.D. Programs FoundationofMinistry ofEducationofChina (No.20134425110010) (No.20134425110010)

  • In an organic phase system, an enzymes lipase was used as a catalyst to synthesize galactosylated cholesterol, (5-cholesten-3b-yl)[(4-O-β-D-galactopyranosyl)D-glucitol-6] sebacate (CHS-SE-LA), which contains galactose residues. Its chemical structure was characterized by ESI-MS, and NMR. For HepG2 cells, the cellular fluorescence intensities of liposomes modified with CHS-SE-LA (GAL-FL) were as much as 2.6-fold (p < 0.01) control liposomes (FL). Moreover, the presence of excess galactose significantly inhibited the uptake of GAL-FL suggesting ASGPR mediated uptake. In conclusion, the novel galactosylated ligand CHS-SE-LA was synthesized by lipase-catalyzation and revealed a great potential as drug carrier materials for hepatocyte-selective targeting.
  • 加载中
    1. [1]

      [1] A.N. Zelensky, J.E. Gready, The C-type lectin-like domain superfamily, FEBS J. 272 (2005) 6179-6217.

    2. [2]

      [2] G.J. Bernardes, R. Kikkeri, M. Maglinao, et al., Design, synthesis and biological evaluation of carbohydrate-functionalized cyclodextrins and liposomes for hepatocyte- specific targeting, Org. Biomol. Chem. 8 (2010) 4987-4996.

    3. [3]

      [3] S.L. Wang, F.B. Yu, T.Y. Jiang, et al., Design and synthesis of novel galactosylated polymers for liposomes as gene drug carriers targeting the hepatic asialoglycoprotein receptor, J. Drug Target. 16 (2008) 233-242.

    4. [4]

      [4] M. Yamamoto, K. Ichinose, N. Ishii, et al., Utility of liposomes coated with polysaccharide bearing 1-amino-lactose as targeting chemotherapy for AH66 hepatoma cells, Oncol. Rep. 7 (2000) 107-111.

    5. [5]

      [5] D.B. Rozema, D.L. Lewis, D.H. Wakefield, et al., Dynamic polyConjugates for targeted in vivo delivery of siRNA to hepatocytes, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 12982-12987.

    6. [6]

      [6] Y. Miura, T. Ikeda, K. Kobayashi, Chemoenzymatically synthesized glycoconjugate polymers, Biomacromolecules 4 (2003) 410-415.

    7. [7]

      [7] L.A. Sliedregt, P.C. Rensen, E.T. Rump, et al., Design and synthesis of novel amphiphilic dendritic galactosides for selective targeting of liposomes to the hepatic asialoglycoprotein receptor, J. Med. Chem. 42 (1999) 609-618.

    8. [8]

      [8] S. Kawakami, J. Wong, A. Sato, et al., Biodistribution characteristics of mannosylated, fucosylated, and galactosylated liposomes in mice, Biochim. Biophys. Acta 1524 (2000) 258-265.

    9. [9]

      [9] P.C. Rensen, L.A. Sliedregt, M. Ferns, et al., Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo, J. Biol. Chem. 276 (2001) 37577-37584.

    10. [10]

      [10] S.N. Wang, Y.H. Deng, H. Xu, et al., Synthesis of a novel galactosylated lipid and its application to the hepatocyte-selective targeting of liposomal doxorubicin, Eur. J. Pharm. Biopharm. 62 (2006) 32-38.

    11. [11]

      [11] N. Turan, J.F. Kennedy, in: Munishwar Nath Gupta (Ed.), Methods in Non-aqueous Enzymology, 47, Birkhäuser Verlag, Basel, 2002, , x + 218 pp., sFr. 228, Carbohydrate Polymers 47 (2002) 88.

    12. [12]

      [12] E.A. Biessen, D.M. Beuting, H.C. Roelen, et al., Synthesis of cluster galactosides with high affinity for the hepatic asialoglycoprotein receptor, J. Med. Chem. 38 (1995) 1538-1546.

    13. [13]

      [13] R.T. Lee, M.H. Wang, W.J. Lin, Y.C. Lee, New and more efficient multivalent glycoligands for asialoglycoprotein receptor of mammalian hepatocytes, Bioorg. Med. Chem. 19 (2011) 2494-2500.

    14. [14]

      [14] S. Kawakami, F. Yamashita, M. Nishikawa, Y. Takakura, M. Hashida, Asialoglycoprotein receptor-mediated gene transfer using novel galactosylated cationic liposomes, Biochem. Biophys. Res. Commun. 252 (1998) 78-83.

    15. [15]

      [15] C. Managit, S. Kawakami, F. Yamashita, M. Hashida, Effect of galactose density on asialoglycoprotein receptor-mediated uptake of galactosylated liposomes, J. Pharm. Sci. 94 (2005) 2266-2275.

    16. [16]

      [16] S. Kawakami, C. Munakata, S. Fumoto, F. Yamashita, M. Hashida, Novel galactosylated liposomes for hepatocyte-selective targeting of lipophilic drugs, J. Pharm. Sci. 90 (2001) 105-113.

    17. [17]

      [17] M. Wei, Y. Xu, Q. Zou, et al., Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin, Eur. J. Pharm. Sci. 46 (2012) 131-141.

    18. [18]

      [18] J. Chopineau, F.D. McCafferty, M. Therisod, A.M. Klibanov, Production of biosurfactants from sugar alcohols and vegetable oils catalyzed by lipases in a nonaqueous medium, Biotechnol. Bioeng. 31 (1988) 208-214.

    19. [19]

      [19] A. Halldorsson, C.D. Magnusson, G.G. Haraldsson, Chemoenzymatic synthesis of structured triacylglycerols, Tetrahedron Lett. 42 (2001) 7675-7677.

    20. [20]

      [20] F. Yu, T. Jiang, J. Zhang, L. Cheng, S. Wang, Galactosylated liposomes as oligodeoxynucleotides carrier for hepatocyte-selective targeting, Pharmazie 62 (2007) 528-533.

  • 加载中
    1. [1]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    2. [2]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    3. [3]

      Kai WangYun WangLihang WangZhuhai LiXi YuXuanhe YouDiwei WuYueming SongJiancheng ZengZongke ZhouShishu HuangYunfeng Lin . Therapeutic siRNA targeting CC chemokine receptor 2 loaded with tetrahedral framework nucleic acid alleviates neuropathic pain by regulating microglial polarization. Chinese Chemical Letters, 2025, 36(3): 109868-. doi: 10.1016/j.cclet.2024.109868

    4. [4]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    5. [5]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    6. [6]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    7. [7]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    8. [8]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    9. [9]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    10. [10]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    11. [11]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    12. [12]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    13. [13]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    14. [14]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    15. [15]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    16. [16]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    17. [17]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    18. [18]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    19. [19]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    20. [20]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

Metrics
  • PDF Downloads(0)
  • Abstract views(596)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return