Citation: Xin-Yue Hu, Yong Chen, Yu Liu. Redox-responsive supramolecular nanoparticles based on amphiphilic sulfonatocalixarene and selenocystamine dihydrochloride[J]. Chinese Chemical Letters, ;2015, 26(7): 862-866. doi: 10.1016/j.cclet.2015.01.003 shu

Redox-responsive supramolecular nanoparticles based on amphiphilic sulfonatocalixarene and selenocystamine dihydrochloride

  • Corresponding author: Yu Liu, 
  • Received Date: 10 December 2014
    Available Online: 25 December 2014

    Fund Project: We thank “973” Program (No. 2011CB 932502) (No. 2011CB 932502)

  • A supramolecular nanoparticle was fabricated based on the aggregation of amphiphilic p-sulfonatocalixarene induced by selenocystamine dihydrochloride (Se-Cys). The application of Se-Cys remarkably decreases the critical aggregation concentration of sulfonatocalixarene, and the resultant spherical nanoparticle was investigated by fluorescence spectroscopy, dynamic laser scattering, and transmission electron microscopy. Owing to the property of Se-Cys, the nanoparticles showed the redoxresponsive disassembly behaviors with the addition of H2O2 and GSH.
  • 加载中
    1. [1]

      [1] Y. Lu, W. Sun, Z. Gu, Stimuli-responsive nanomaterials for therapeutic protein delivery, J. Control. Release 194 (2014) 1–19.

    2. [2]

      [2] S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater. 12 (2013) 991–1003.

    3. [3]

      [3] E.G. Kelley, J.N.L. Albert, M.O. Sullivan, T.H. Epps, Stimuli-responsive copolymer solution and surface assemblies for biomedical applications, Chem. Soc. Rev. 42 (2013) 7057–7071.

    4. [4]

      [4] J. Chen, X. Qiu, J. Ouyang, et al., pH and reduction dual-sensitive copolymeric micelles for intracellular doxorubicin delivery, Biomacromolecules 12 (2011) 3601–3611.

    5. [5]

      [5] D.J. Fu, Y. Jin, M.Q. Xie, et al., Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumor activity, Chin. Chem. Lett. 25 (2014) 1435–1440.

    6. [6]

      [6] D. Han, X. Tong, Y. Zhao, Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation, Langmuir 28 (2012) 2327–2331.

    7. [7]

      [7] L.X. Yu, Y. Liu, S.C. Chen, Y. Guan, Y.Z. Wang, Reversible photoswitching aggregation and dissolution of spiropyranfunctionalized copolymer and light-responsive FRET process, Chin. Chem. Lett. 25 (2014) 389–396.

    8. [8]

      [8] T. Ta, A.J. Convertine, C.R. Reyes, P.S. Stayton, T.M. Porter, Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin, Biomacromolecules 11 (2011) 1915–1920.

    9. [9]

      [9] G. von Maltzahn, T.J. Harris, J.H. Park, et al., Nanoparticle self-assembly gated by logical proteolytic triggers, J. Am. Chem. Soc. 129 (2007) 6064–6065.

    10. [10]

      [10] L. Dong, S. Xia, Z. Huang, et al., A pH/enzyme-responsive tumor-specific delivery system for doxorubicin, Biomaterials 31 (2010) 6309–6316.

    11. [11]

      [11] C. Wei, J. Guo, C. Wang, Dual stimuli-responsive polymeric micelles exhibiting “and” logic gate for controlled release of adriamycin, Macromol. Rapid Commun. 32 (2011) 451–455.

    12. [12]

      [12] R. Boyd, Selenium stories, Nat. Chem. 3 (2011) 570.

    13. [13]

      [13] G. Mugesh, W.W. du Mont, H. Sies, Chemistry of biologically important synthetic organoselenium compounds, Chem. Rev. 101 (2001) 2125–2180.

    14. [14]

      [14] H. Xu, W. Cao, X. Zhang, Selenium-containing polymers: promising biomaterials for controlled release and enzymer minics, Acc. Chem. Res. 46 (2013) 1647–1658.

    15. [15]

      [15] N.K. Kildahl, Bond energy data summarized, J. Chem. Educ. 72 (1995) 423–424.

    16. [16]

      [16] N. Ma, Y. Li, H. Xu, Z. Wang, X. Zhang, Dual redox responsive assemblies formed from diselenide block copolymers, J. Am. Chem. Soc. 132 (2010) 442–443.

    17. [17]

      [17] N. Ma, Y. Li, H. Ren, et al., Selenium-containing block copolymers and their oxidation-responsive aggregates, Polym. Chem. 1 (2010) 1609–1614.

    18. [18]

      [18] W. Cao, Y. Li, Y. Yi, et al., Coordination-responsive selenium containing polymer micelles for controlled drug release, Chem. Sci. 3 (2012) 3403–3408.

    19. [19]

      [19] N. Ma, H. Xu, L. An, et al., Radiation-sensitive diselenide block copolymer micellar aggregates: toward the combination of radiotherapy and chemotherapy, Langmuir 27 (2011) 5874–5878.

    20. [20]

      [20] P. Han, N. Ma, H. Ren, et al., Oxidation-responsive micelles based on a seleniumcontaining polymeric superamphiphile, Langmuir 26 (2010) 14414–14418.

    21. [21]

      [21] D.S. Guo, Y. Liu, Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications, Acc. Chem. Res. 47 (2014) 1925–1934.

    22. [22]

      [22] D.S. Guo, K. Wang, Y.X. Wang, Y. Liu, Cholinesterase-responsive supramolecular vesicle, J. Am. Chem. Soc. 134 (2012) 10244–10250.

    23. [23]

      [23] K. Wang, D.S. Guo, X. Wang, Y. Liu, Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonato calixarene and its controllable release of doxorubicin, ACS Nano 5 (2011) 2880–2894.

    24. [24]

      [24] B.P. Jiang, D.S. Guo, Y.C. Liu, K.P. Wang, Y. Liu, Photomodulated fluorescence of supramolecular assemblies of sulfonato calixarenes and tetraphenylethene, ACS Nano 8 (2014) 1609–1618.

    25. [25]

      [25] C. Zhou, X. Chen, Y. Yun, J. Wang, J. Huang, Reversible transition between SDS@2β-CD microtubes and vesicles triggered by temperature, Langmuir 30 (2014) 3381–3386.

    26. [26]

      [26] C. Zhou, X. Chen, Q. Zhao, et al., Self-assembly of nonionic surfactant tween 20@2β-CD inclusion complexes in dilute solution, Langmuir 23 (2013) 13175– 13182.

    27. [27]

      [27] G. Yu, X. Zhou, Z. Zhang, et al., Pillar[6]arene/paraquat molecular recognition in water: high binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning, J. Am. Chem. Soc. 134 (2012) 19489–19497.

    28. [28]

      [28] X.Y. Hu, K. Jia, Y. Cao, et al., Dual pH- and photo-responsive supramolecular nanocarriers based on water-soluble pillar[6]arene and different azobenzene derivatives for intracellular anticancer drug delivery, Chem. Eur. J. (2015), http://dx.doi.org/10.1002/chem.201405095.

    29. [29]

      [29] Y. Cao, X.Y. Hu, Y. Li, et al., Multistimuli-responsive supramolecular vesicles based on water-soluble pillar[6]arene and SAINT complexation for controllable drug release, J. Am. Chem. Soc. 136 (2014) 10762–10769.

    30. [30]

      [30] J. Tian, T.Y. Zhou, S.C. Zhang, et al., Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals, Nat. Commun. 5 (2014) 5574.

    31. [31]

      [31] L.H. Wang, Z.J. Zhang, H.Y. Zhang, H.L. Wu, Y. Liu, A twin-axial[5]pseudorotaxane based on cucurbit[8]uril and a-cyclodextrin, Chin. Chem. Lett. 24 (2013) 949–952.

    32. [32]

      [32] N. Basilio, L. Garcia-Rio, Calixarene-based surfactants: conformational-dependent solvation shells for the alkyl chains, ChemPhysChem 13 (2012) 2368–2376.

    33. [33]

      [33] P.J.G. Coutinho, E.M.S. Castanheira, M.C. Rei, M.E.C.D. Real Oliveira, Nile red and DCM fluorescence anisotropy studies in C12E7/DPPC mixed systems, J. Phys. Chem. B 106 (2002) 12841–12846.

    34. [34]

      [34] A. Fredga, Organic selenium chemistry, Ann. N. Y. Acad. Sci. 192 (1972) 1–9.

  • 加载中
    1. [1]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    2. [2]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    3. [3]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    4. [4]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    5. [5]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    6. [6]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    7. [7]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    8. [8]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    9. [9]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    10. [10]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    11. [11]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    12. [12]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    13. [13]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    14. [14]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    15. [15]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    16. [16]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    17. [17]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    18. [18]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    19. [19]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    20. [20]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

Metrics
  • PDF Downloads(0)
  • Abstract views(675)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return