Citation:
Xin-Yue Hu, Yong Chen, Yu Liu. Redox-responsive supramolecular nanoparticles based on amphiphilic sulfonatocalixarene and selenocystamine dihydrochloride[J]. Chinese Chemical Letters,
;2015, 26(7): 862-866.
doi:
10.1016/j.cclet.2015.01.003
-
A supramolecular nanoparticle was fabricated based on the aggregation of amphiphilic p-sulfonatocalixarene induced by selenocystamine dihydrochloride (Se-Cys). The application of Se-Cys remarkably decreases the critical aggregation concentration of sulfonatocalixarene, and the resultant spherical nanoparticle was investigated by fluorescence spectroscopy, dynamic laser scattering, and transmission electron microscopy. Owing to the property of Se-Cys, the nanoparticles showed the redoxresponsive disassembly behaviors with the addition of H2O2 and GSH.
-
Keywords:
- Selenium,
- Stimuli-responsive,
- Supramolecular nanoparticle,
- Calixarene
-
-
-
[1]
[1] Y. Lu, W. Sun, Z. Gu, Stimuli-responsive nanomaterials for therapeutic protein delivery, J. Control. Release 194 (2014) 1–19.
-
[2]
[2] S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater. 12 (2013) 991–1003.
-
[3]
[3] E.G. Kelley, J.N.L. Albert, M.O. Sullivan, T.H. Epps, Stimuli-responsive copolymer solution and surface assemblies for biomedical applications, Chem. Soc. Rev. 42 (2013) 7057–7071.
-
[4]
[4] J. Chen, X. Qiu, J. Ouyang, et al., pH and reduction dual-sensitive copolymeric micelles for intracellular doxorubicin delivery, Biomacromolecules 12 (2011) 3601–3611.
-
[5]
[5] D.J. Fu, Y. Jin, M.Q. Xie, et al., Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumor activity, Chin. Chem. Lett. 25 (2014) 1435–1440.
-
[6]
[6] D. Han, X. Tong, Y. Zhao, Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation, Langmuir 28 (2012) 2327–2331.
-
[7]
[7] L.X. Yu, Y. Liu, S.C. Chen, Y. Guan, Y.Z. Wang, Reversible photoswitching aggregation and dissolution of spiropyranfunctionalized copolymer and light-responsive FRET process, Chin. Chem. Lett. 25 (2014) 389–396.
-
[8]
[8] T. Ta, A.J. Convertine, C.R. Reyes, P.S. Stayton, T.M. Porter, Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin, Biomacromolecules 11 (2011) 1915–1920.
-
[9]
[9] G. von Maltzahn, T.J. Harris, J.H. Park, et al., Nanoparticle self-assembly gated by logical proteolytic triggers, J. Am. Chem. Soc. 129 (2007) 6064–6065.
-
[10]
[10] L. Dong, S. Xia, Z. Huang, et al., A pH/enzyme-responsive tumor-specific delivery system for doxorubicin, Biomaterials 31 (2010) 6309–6316.
-
[11]
[11] C. Wei, J. Guo, C. Wang, Dual stimuli-responsive polymeric micelles exhibiting “and” logic gate for controlled release of adriamycin, Macromol. Rapid Commun. 32 (2011) 451–455.
-
[12]
[12] R. Boyd, Selenium stories, Nat. Chem. 3 (2011) 570.
-
[13]
[13] G. Mugesh, W.W. du Mont, H. Sies, Chemistry of biologically important synthetic organoselenium compounds, Chem. Rev. 101 (2001) 2125–2180.
-
[14]
[14] H. Xu, W. Cao, X. Zhang, Selenium-containing polymers: promising biomaterials for controlled release and enzymer minics, Acc. Chem. Res. 46 (2013) 1647–1658.
-
[15]
[15] N.K. Kildahl, Bond energy data summarized, J. Chem. Educ. 72 (1995) 423–424.
-
[16]
[16] N. Ma, Y. Li, H. Xu, Z. Wang, X. Zhang, Dual redox responsive assemblies formed from diselenide block copolymers, J. Am. Chem. Soc. 132 (2010) 442–443.
-
[17]
[17] N. Ma, Y. Li, H. Ren, et al., Selenium-containing block copolymers and their oxidation-responsive aggregates, Polym. Chem. 1 (2010) 1609–1614.
-
[18]
[18] W. Cao, Y. Li, Y. Yi, et al., Coordination-responsive selenium containing polymer micelles for controlled drug release, Chem. Sci. 3 (2012) 3403–3408.
-
[19]
[19] N. Ma, H. Xu, L. An, et al., Radiation-sensitive diselenide block copolymer micellar aggregates: toward the combination of radiotherapy and chemotherapy, Langmuir 27 (2011) 5874–5878.
-
[20]
[20] P. Han, N. Ma, H. Ren, et al., Oxidation-responsive micelles based on a seleniumcontaining polymeric superamphiphile, Langmuir 26 (2010) 14414–14418.
-
[21]
[21] D.S. Guo, Y. Liu, Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications, Acc. Chem. Res. 47 (2014) 1925–1934.
-
[22]
[22] D.S. Guo, K. Wang, Y.X. Wang, Y. Liu, Cholinesterase-responsive supramolecular vesicle, J. Am. Chem. Soc. 134 (2012) 10244–10250.
-
[23]
[23] K. Wang, D.S. Guo, X. Wang, Y. Liu, Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonato calixarene and its controllable release of doxorubicin, ACS Nano 5 (2011) 2880–2894.
-
[24]
[24] B.P. Jiang, D.S. Guo, Y.C. Liu, K.P. Wang, Y. Liu, Photomodulated fluorescence of supramolecular assemblies of sulfonato calixarenes and tetraphenylethene, ACS Nano 8 (2014) 1609–1618.
-
[25]
[25] C. Zhou, X. Chen, Y. Yun, J. Wang, J. Huang, Reversible transition between SDS@2β-CD microtubes and vesicles triggered by temperature, Langmuir 30 (2014) 3381–3386.
-
[26]
[26] C. Zhou, X. Chen, Q. Zhao, et al., Self-assembly of nonionic surfactant tween 20@2β-CD inclusion complexes in dilute solution, Langmuir 23 (2013) 13175– 13182.
-
[27]
[27] G. Yu, X. Zhou, Z. Zhang, et al., Pillar[6]arene/paraquat molecular recognition in water: high binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning, J. Am. Chem. Soc. 134 (2012) 19489–19497.
-
[28]
[28] X.Y. Hu, K. Jia, Y. Cao, et al., Dual pH- and photo-responsive supramolecular nanocarriers based on water-soluble pillar[6]arene and different azobenzene derivatives for intracellular anticancer drug delivery, Chem. Eur. J. (2015), http://dx.doi.org/10.1002/chem.201405095.
-
[29]
[29] Y. Cao, X.Y. Hu, Y. Li, et al., Multistimuli-responsive supramolecular vesicles based on water-soluble pillar[6]arene and SAINT complexation for controllable drug release, J. Am. Chem. Soc. 136 (2014) 10762–10769.
-
[30]
[30] J. Tian, T.Y. Zhou, S.C. Zhang, et al., Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals, Nat. Commun. 5 (2014) 5574.
-
[31]
[31] L.H. Wang, Z.J. Zhang, H.Y. Zhang, H.L. Wu, Y. Liu, A twin-axial[5]pseudorotaxane based on cucurbit[8]uril and a-cyclodextrin, Chin. Chem. Lett. 24 (2013) 949–952.
-
[32]
[32] N. Basilio, L. Garcia-Rio, Calixarene-based surfactants: conformational-dependent solvation shells for the alkyl chains, ChemPhysChem 13 (2012) 2368–2376.
-
[33]
[33] P.J.G. Coutinho, E.M.S. Castanheira, M.C. Rei, M.E.C.D. Real Oliveira, Nile red and DCM fluorescence anisotropy studies in C12E7/DPPC mixed systems, J. Phys. Chem. B 106 (2002) 12841–12846.
-
[34]
[34] A. Fredga, Organic selenium chemistry, Ann. N. Y. Acad. Sci. 192 (1972) 1–9.
-
[1]
-
-
-
[1]
Huan Hu , Ying Zhang , Shi-Shuang Huang , Zhi-Gang Li , Yungui Liu , Rui Feng , Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395
-
[2]
Chao Zhang , Ai-Feng Liu , Shihui Li , Fang-Yuan Chen , Jun-Tao Zhang , Fang-Xing Zeng , Hui-Chuan Feng , Ping Wang , Wen-Chao Geng , Chuan-Rui Ma , Dong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752
-
[3]
Jiajie Gu , Jiaxiang Gu , Lei Yu . Selenium and Alzheimer's disease. Chinese Chemical Letters, 2025, 36(8): 110727-. doi: 10.1016/j.cclet.2024.110727
-
[4]
Jiahui Li , Qiao Shi , Ying Xue , Mingde Zheng , Long Liu , Tuoyu Geng , Daoqing Gong , Minmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239
-
[5]
Wen-Wen Xu , Yue-Xiu Qin , Xiao-Yong Yu , Lin-Nan Jiang , Heng-Yi Zhang , Yong Chen , Yu Liu . Multipath cascade light harvesting for multicolor luminescence based on macrocyclic sulfonatocalix[4]arene. Chinese Chemical Letters, 2025, 36(11): 111068-. doi: 10.1016/j.cclet.2025.111068
-
[6]
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
-
[7]
Fanghua Zhang , Yuyan Li , Hongyan Zhang , Wendong Liu , Zhe Hao , Mingzheng Shao , Ruizhong Zhang , Xiyan Li , Libing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848
-
[8]
Xingyu Chen , Sihui Zhuang , Weiyao Yan , Zhengli Zeng , Jianguo Feng , Hongen Cao , Lei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635
-
[9]
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
-
[10]
Dongpu Wu , Zheng Yang , Yuchen Xia , Lulu Wu , Yingxia Zhou , Caoyuan Niu , Puhui Xie , Xin Zheng , Zhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353
-
[11]
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
-
[12]
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
-
[13]
Ying Liu , Jia Ji , Yinling Hou , Lilan Guo , Xuan Lv . Selenium’s Journey. University Chemistry, 2025, 40(7): 218-224. doi: 10.12461/PKU.DXHX202409046
-
[14]
Dan PENG , Hao WANG , Yanyan WANG , Hongpeng YOU , Wuping LIAO . Synthesis and fluorescent properties of a one-dimensional Tb-calixarene complex as a luminescent thermometer material. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1859-1866. doi: 10.11862/CJIC.20250128
-
[15]
Fengzhang TU , Zhong JIN . Honeycomb-like N, O dual-doped carbon/selenium composites: Preparation and performance in alkali metal-selenium batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2371-2384. doi: 10.11862/CJIC.20250227
-
[16]
Hong-Guang Fu , Xuan Wu , Hui-Juan Wang , Fanjun Zhang , Yong Chen , Jing Xu . Color-tunable multi-stimuli-responsive luminescent system based on diarylethene and photoacid. Chinese Chemical Letters, 2025, 36(8): 110741-. doi: 10.1016/j.cclet.2024.110741
-
[17]
Zhiyao Yang , Kuirong Fu , Wentao Yu , Along Jia , Xinnan Chen , Yimin Cai , Xiaowei Li , Wen Feng , Lihua Yuan . A multi-stimuli responsive [3]rotaxane based on hydrogen-bonded aramide azo-macrocycles. Chinese Chemical Letters, 2025, 36(9): 110842-. doi: 10.1016/j.cclet.2025.110842
-
[18]
Mao-Fan Li , Ming‐Yu Guo , De-Xuan Liu , Xiao-Xian Chen , Wei-Jian Xu , Wei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507
-
[19]
Zhi Li , Shuya Pan , Yuan Tian , Shaowei Liu , Weifeng Wei , Jinlin Wang , Tianfeng Chen , Ling Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018
-
[20]
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1176)
- HTML views(24)
Login In
DownLoad: