Citation: Rachel L. Merzel, Jun-Jie Chen, E. Neil G. Marsh, Mark M. Banaszak Holl. Folate binding protein-Outlook for drug delivery applications[J]. Chinese Chemical Letters, ;2015, 26(4): 426-430. doi: 10.1016/j.cclet.2014.12.015 shu

Folate binding protein-Outlook for drug delivery applications

  • Corresponding author: Mark M. Banaszak Holl, 
  • Received Date: 18 November 2014
    Available Online: 8 December 2014

  • Serum proteins represent an important class of drug and imaging agent delivery vectors. In this minireview, key advantages of using serum proteins are discussed, followed by the particular advantages and challenges associated with employing soluble folate binding protein. In particular, approaches employing drugs that target folate metabolism are reviewed. Additionally, the slow-onset, tightbinding interaction of folate with folate binding protein and the relationship to a natural oligomerization mechanism is discussed. These unique aspects of folate binding protein suggest interesting applications for the protein as a vector for further drug and imaging agent development.
  • 加载中
    1. [1]

      [1] Y. Shen, J.M. Jacobs, D.G. Camp, et al., Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome, Anal. Chem. 76 (2004) 1134-1144.

    2. [2]

      [2] I. Lynch, K.A. Dawson, Protein-nanoparticle interactions, Nano Today 3 (2008) 40-47.

    3. [3]

      [3] F. Kratz, B. Elsadek, Clinical impact of serum proteins on drug delivery, J. Controlled Release 161 (2012) 429-445.

    4. [4]

      [4] A.M. Merlot, D.S. Kalinowski, D.R. Richardson, Unraveling the mysteries of serum albumin-more than just a serum protein, Front. Physiol. 5 (2014) 1-7.

    5. [5]

      [5] B. Elsadek, F. Kratz, Impact of albumin on drug delivery-new applications on the horizon, J Controlled Release 157 (2012) 4-28.

    6. [6]

      [6] F. Kratz, Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles, J Controlled Release 132 (2008) 171-183.

    7. [7]

      [7] Q. Chen, C. Liang, X. Wang, et al., An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery, Biomaterials 35 (2014) 9355-9362.

    8. [8]

      [8] Q. Chen, C. Wang, Z.X. Zhan, et al., Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy, Biomaterials 35 (2014) 8206-8214.

    9. [9]

      [9] A.N. Luck, A.B. Mason, Structure and dynamics of drug carriers and their interaction with cellular receptors: focus on serum transferrin, Adv. Drug Delivery Rev. 65 (2013) 1012-1019.

    10. [10]

      [10] C.P. Leamon, Folate-targeted drug strategies for the treatment of cancer, Curr. Opin. Invest. Drugs 9 (2008) 1277-1286.

    11. [11]

      [11] P.S. Low, W.A. Henne, D.D. Doorneweerd, Discovery and development of folicacid- based receptor targeting for Imaging and therapy of cancer and inflammatory diseases, Acc. Chem. Res. 41 (2008) 120-129.

    12. [12]

      [12] I.M. Kompis, K. Islam, R.L. Then, DNA and RNA synthesis: antifolates, Chem. Rev. 105 (2005) 593-620.

    13. [13]

      [13] M. Sharma, P.M.S. Chauhan, Dihydrofolate reductase as a therapeutic target for infectious diseases: opportunities and challenges, Future Med. Chem. 4 (2012) 1335-1365.

    14. [14]

      [14] A.S. Wibowo, M. Singh, K.M. Reeder, et al., Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 15180-15188.

    15. [15]

      [15] C. Chen, J. Ke, X.E. Zhou, et al., Structural basis for molecular recognition of folic acid by folate receptors, Nature 500 (2013) 486-490.

    16. [16]

      [16] J. Ghitis, Folate binding in milk, Am. J. Clin. Nutr. 20 (1967) 1-4.

    17. [17]

      [17] M. Hoier-Madsen, J. Holm, S.I. Hansen, Alpha isoforms of soluble and membrane- linked folate-binding protein in human blood, Biosci. Rep. 28 (2008) 153-160.

    18. [18]

      [18] A.C. Antony, Folate receptors, Annu. Rev. Nutr. 16 (1996) 501-521.

    19. [19]

      [19] G.B. Henderson, Folate binding proteins, Annu. Rev. Nutr. 10 (1990).

    20. [20]

      [20] J. Holm, L.N. Babol, N. Markova, A.J. Lawaetz, S.I. Hansen, The interrelationship between ligand binding and thermal unfolding of the folate binding protein. The role of self-association and pH, Biochim. Biophys. Acta-Proteins Proteomics 1844 (2014) 512-519.

    21. [21]

      [21] B.A. Kamen, Folate receptors and therapeutic applications, in: A.L. Jackman, C.P. Leamon (Eds.), Targeted Drug Strategies for Cancer and Inflammation, Springer, New York, 2011.

    22. [22]

      [22] L. Nygren-Babol, M. Jagerstad, Folate-binding protein in milk: a review of biochemistry, physiology, and analytical methods, Crit. Rev. Food Sci. Nutr. 52 (2012) 410-425.

    23. [23]

      [23] N. Grossowicz, Purification and properties of the folate-binding protein, Methods Enzymol. 66 (1980) 690-694.

    24. [24]

      [24] T. Treloar, P.A. Grieve, P.F. Nixon, One-step affinity purification of folate-binding protein, a minor whey protein, Aust. J. Dairy Technol. 59 (2000) 96.

    25. [25]

      [25] I. Svendsen, B. Martin, T.G. Pedersen, et al., Isolation and characterization of the folate-binding protein from cows milk, Carlsberg Res. Commun. 44 (1979) 89-99.

    26. [26]

      [26] I.B. Svendsen, S.I. Hansen, J. Holm, J. Lyngbye, The complete amino-acid-sequence of the folate-binding protein from cows milk, Carlsberg Res. Commun. 49 (1984) 123-131.

    27. [27]

      [27] S.J. Roberts, M. Petropavlovskaja, K.N. Chung, C.B. Knight, P.C. Elwood, Role of individual N-linked glycosylation sites in the function and intracellular transport of the human alpha folate receptor, Arch. Biochem. Biophys. 351 (1998) 227- 235.

    28. [28]

      [28] M. Ratnam, H. Marquardt, J.L. Duhring, J.H. Freisheim, Homologous membrane folate binding-proteins in human-placenta-cloning and sequence of a cDNA, Biochemistry 28 (1989) 8249-8254.

    29. [29]

      [29] C.A. Luhrs, The role of glycosylation in the biosynthesis and acquisition of ligandbinding activity of the folate-binding protein in cultured Kb cells, Blood 77 (1991) 1171-1180.

    30. [30]

      [30] S.W. Bruun, J. Holm, S.I. Hansen, C.M. Andersen, L. Norgaard, A chemometric analysis of ligand-induced changes in intrinsic fluorescence of folate binding protein indicates a link between altered conformational structure and physicochemical characteristics, Appl. Spectrosc. 63 (2009) 1315-1322.

    31. [31]

      [31] J. Holm, A.J. Lawaetz, S.I. Hansen, Ligand binding induces a sharp decrease in hydrophobicity of folate binding protein assessed by 1-anilinonaphthalene-8- sulphonate which suppresses self-association of the hydrophobic apo-protein, Biochem. Biophys. Res. Commun. 425 (2012) 19-24.

    32. [32]

      [32] E.J. Smart, C. Mineo, R.G.W. Anderson, Clustered folate receptors deliver 5- methyltetrahydrofolate to cytoplasm of MA104 cells, J. Cell Biol. 134 (1996) 1169-1177.

    33. [33]

      [33] E. Moradi, D. Vllasaliu, M. Garnett, F. Falcone, S. Stolnik, Ligand density and clustering effects on endocytosis of folate modified nanoparticles, RSC Adv. 2 (2012) 3025-3033.

    34. [34]

      [34] H. Birn, X.Y. Zhai, J. Holm, et al., Megalin binds and mediates cellular internalization of folate binding protein, FEBS J. 272 (2005) 4423-4430.

    35. [35]

      [35] M.J. Sculley, J.F. Morrison, W.W. Cleland, Slow-binding inhibition: the general case, Biochim. Biophys. Acta 1298 (1996) 78-86.

    36. [36]

      [36] U. Christensen, J. Holm, S.I. Hansen, Stopped-flow kinetic studies of the interaction of bovine folate binding protein (FBP) and folate, Biosci. Rep. 26 (2006) 291- 299.

    37. [37]

      [37] S.I. Hansen, J. Holm, J. Lyngbye, T.G. Pedersen, I. Svendsen, Dependence of aggregation and ligand affinity on the concentration of the folate-binding protein from cows milk, Arch. Biochem. Biophys. 226 (1983) 636-642.

    38. [38]

      [38] T.G. Pedersen, I.B. Svendsen, S.I. Hansen, J. Holm, J. Lyngbye, Aggregation of a folate-binding protein from cows milk, Carlsberg Res. Commun. 45 (1980) 161- 166.

    39. [39]

      [39] X. Shi, X. Bi, T.R. Ganser, et al., HPLC Analysis of functionalized poly(amidoamine) dendrimers and the interaction between a folate-dendrimer conjugate and folate binding protein, Analyst 131 (2006) 842-848.

    40. [40]

      [40] L.E. Kelderhouse, V. Chelvam, C. Wayua, et al., Development of tumor-targeted near infrared probes for fluorescence guided surgery, Bioconj. Chem. 24 (2013) 1075-1080.

    41. [41]

      [41] G.M. van Dam, G. Themelis, L.M.A. Crane, et al., Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results, Nat. Med. 17 (2011), 1315-1319.

    42. [42]

      [42] M.D. Kennedy, K.N. Jallad, D.H. Thompson, D. Ben-Amotz, P.S. Low, Optical imaging of metastatic tumors using a folate-targeted fluorescent probe, J. Biomed. Opt. 8 (2003) 636-641.

    43. [43]

      [43] P.S. Low, S.A. Kularatne, Folate-targeted therapeutic and imaging agents for cancer, Curr. Opin. Chem. Biol. 13 (2009) 256-262.

    44. [44]

      [44] Q. Chen, K.A. Li, S.H. Wen, et al., Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles, Biomaterials 34 (2013) 5200-5209.

    45. [45]

      [45] J.C. Li, L.F. Zheng, H.D. Cai, et al., Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging, Biomaterials 34 (2013) 8382-8392.

    46. [46]

      [46] Y. Wang, R. Guo, X. Cao, M. Shen, X. Shi, Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy, Biomaterials 2011 (2011) 3322-3329.

    47. [47]

      [47] P. Chen, J. Qin, B. Zhou, et al., Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles, Polym. Chem. 4 (2013) 4412-4424.

    48. [48]

      [48] H. Lui, Y. Xu, S. Wen, et al., Targeted tumor computed tomagraphy imaging using low-generation dendrimer-stabilized gold nanoparticles, Chem. Eur. J. 19 (2013) 6409-6416.

    49. [49]

      [49] S. Wen, H. Liu, H. Cai, M. Shen, X. Shi, Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multiwalled carbon nanotubes, Adv. Healthc. Mater. 2 (2013) 1267-1276.

    50. [50]

      [50] X.H. Liang, Y. Sun, L.S. Liu, et al., Regioselective synthesis and initial evaluation of a folate receptor targeted rhaponticin prodrug, Chin. Chem. Lett. 23 (2012) 1133- 1136.

    51. [51]

      [51] A. Gabizon, A.T. Horowitz, D. Goren, et al., Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies, Bioconj. Chem. 10 (1999) 289-298.

    52. [52]

      [52] J.F. Kukowska-Latallo, K.A. Candido, Z.Y. Cao, et al., Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer, Cancer Res. 65 (2005) 5317-5324.

    53. [53]

      [53] J.E. Silpe, M. Sumit, T.P. Thomas, et al., Avidity modulation of folated-targeted multivalent dendrimers for evaluating biophysical models of cancer targeting nanoparticles, ACS Chem. Biol. 8 (2013) 2063-2071.

    54. [54]

      [54] Y. Zhang, M.Y. Xu, T.K. Jiang, W.Z. Huang, J.Y. Wu, Low generational polyamidoamine dendrimers to enhance the solubiity of folic acid: a "dendritic effect" investigation, Chin. Chem. Lett. 25 (2014) 815-818.

    55. [55]

      [55] S. Sunoqrot, J. Bugno, D. Lantvit, J.E. Burdette, S. Hong, Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles, J. Controlled Release 191 (2014) 115-122.

    56. [56]

      [56] S. Hong, P.R. Leroueil, I. Majoros, et al., The binding avidity of a nanoparticlebasedmultivalent targeted drug delivery platform, Chem. Biol. 14 (2007) 107- 115.

    57. [57]

      [57] M.A. van Dongen, J.E. Silpe, C.A. Dougherty, et al., Avidity mechanism of dendrimer- folic acid conjugates, Mol. Pharmaceutics 11 (2014) 1696-1706.

    58. [58]

      [58] M.A. van Dongen, R. Rattan, J.E. Silpe, et al., Poly(amidoamine) dendrimermethotrexate conjugates: the mechanism of interaction with folate binding protein, Mol. Pharmaceutics 11 (2014) 4049-4058.

    59. [59]

      [59] J.J. McGuire, Anticancer antifolates: current status and future directions, Curr. Pharm. Des. 9 (2003) 2593-2613.

    60. [60]

      [60] H.Y. Xue, H.L. Wong, Targeting megalin to enhance delivery of anti-clusterin small-interfering RNA nanomedicine to chemo-treated breast cancer, Eur. J. Pharm. Biopharm. 81 (2012) 24-32.

    61. [61]

      [61] S.K. Holt, D.M. Karyadi, E.M. Kwon, et al., Association of Megalin genetic polymorphisms with prostate cancer risk and prognosis, Clin. Cancer Res. 14 (2008) 3823-3831.

    62. [62]

      [62] I.B. Muller, J.E. Hyde, Antimalarial drugs: modes of action and mechanisms of parasite resistance, Future Microbiol. 5 (2010) 1857-1873.

    63. [63]

      [63] M. Schlitzer, Malaria chemotherapeutics. Part 1: History of antimalarial drug development, currently used therapeutics, and drugs in clinical development, ChemMedChem 2 (2007) 944-986.

  • 加载中
    1. [1]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    2. [2]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    3. [3]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    4. [4]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    5. [5]

      Makhloufi ZoulikhaZhongjian ChenJun WuWei He . Approved delivery strategies for biopharmaceuticals. Chinese Chemical Letters, 2025, 36(2): 110225-. doi: 10.1016/j.cclet.2024.110225

    6. [6]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    7. [7]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    8. [8]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    9. [9]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    10. [10]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    11. [11]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    12. [12]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    13. [13]

      Han WuYumei WangZekai RenHailin CongYouqing ShenBing Yu . The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy. Chinese Chemical Letters, 2025, 36(4): 109996-. doi: 10.1016/j.cclet.2024.109996

    14. [14]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    15. [15]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    16. [16]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    17. [17]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    18. [18]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    19. [19]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    20. [20]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

Metrics
  • PDF Downloads(0)
  • Abstract views(608)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return