Citation: Yang Liu, Zhong-Zhi Yang, Dong-Xia Zhao. Rationalization of regioselectivity of electrophilic substitution reaction for cyclic compounds in terms of Dpb values[J]. Chinese Chemical Letters, ;2015, 26(5): 553-556. doi: 10.1016/j.cclet.2014.12.013 shu

Rationalization of regioselectivity of electrophilic substitution reaction for cyclic compounds in terms of Dpb values

  • Corresponding author: Zhong-Zhi Yang,  Dong-Xia Zhao, 
  • Received Date: 25 September 2014
    Available Online: 15 December 2014

    Fund Project:

  • Accepted theories predict that substitution reactions are controlled by the electronic nature of the attacked site for electrophilic aromatic substitution. Here it is shown that in addition the bond strength of the broken bond may also influence the regioselectivity of the substitution reaction, and that the Dpb is a good indicator of the strength of a chemical bond. The Dpb denotes the depth of the potential acting on one electron in amolecule at the bond center (bc). In this letter, the values of Dpb along the C-H and N-H bonds have been investigated, and it is demonstrated that for aromatic compounds, the regioselectivity of the electrophilic substitution can well be rationalized in terms of Dpb values.
  • 加载中
    1. [1]

      [1] M.N. Hopkinson, C. Richter, M. Schedler, et al., An overview of N-heterocyclic carbenes, Nature 510 (2014) 485-496.

    2. [2]

      [2] P. Stoks, A.W. Schwartz, Nitrogen-heterocyclic compounds in meteorites: significance and mechanisms of formation, Geochim. Cosmochim. Acta 4 (1981) 563-569.

    3. [3]

      [3] M. Jiang, Y.M. Li, G.W. Gu, Study on toxicity of nitrogenous heterocyclic compounds to aquatic organisms, Acta Sci. Circumst. 25 (2005) 1253-1258.

    4. [4]

      [4] E. Robert, J. Maleczka, Copper puts arenes in a hard position, Science 323 (2009) 1572-1573.

    5. [5]

      [5] M. Tobisu, N. Chatan, Remote control by steric effects, Science 343 (2014) 850-851.

    6. [6]

      [6] W. Langenaeker, K. Demel, P. Geerlings, Quantum-chemical study of the Fukui function as a reactivity index. Part 2: Electrophilic substitution on mono-substituted benzenes, J. Mol. Struct. (THEOCHEM) 234 (1991) 329-342.

    7. [7]

      [7] L. Meneses, W. Tiznado, R. Contreras, et al., A proposal for a new local hardness as selectivity index, Chem. Phys. Lett. 383 (2004) 181-187.

    8. [8]

      [8] K. Higasi, H. Baba, A. Rembaum, Quantum Organic Chemistry, John Wiley & Sons, Inc., New York, 1965.

    9. [9]

      [9] H.T. Wang, N. Weng, S.C. Zhang, et al., Identification of petroleum aromatic fraction by comprehensive two-dimensional gas chromatography with timeof- flight mass spectrometry, Chin. Sci. Bull. 19 (2010) 2039-2045.

    10. [10]

      [10] R. Taylor, Electrophilic Aromatic Substitution, Wiley, New York, 1900 (preface).

    11. [11]

      [11] Z.Z. Xu, D.X. Zhao, Z.Z. Yang, Prediction on molecular reactivity of enzymatic catalysis by the generalized reactivity descriptor, Chin. Sci. Bull. 30 (2012) 2787- 2793.

    12. [12]

      [12] K. Godula, D. Sames, C-H bond functionalization in complex organic synthesis, Science 312 (2006) 67-72.

    13. [13]

      [13] Y.C. Ma, J. Liang, D.M. Zhao, et al., Condensed Fukui function predicts innate C-H radical functionalization sites on multi-nitrogen containing fused arenes, RSC Adv. 4 (2014) 17262-17264.

    14. [14]

      [14] K.L.M. Drew, J. Reynisson, The impact of carbon-hydrogen bond dissociation energies on the prediction of the cytochrome P450 mediated major metabolic site of drug-like compounds, Eur. J. Med. Chem. 56 (2012) 48-55.

    15. [15]

      [15] L. Zhang, L. Deng, C-H bond amination by iron-imido/nitrene species, Chin. Sci. Bull. 19 (2012) 2352-2360.

    16. [16]

      [16] Y.R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press, Boca Raton, 2002.

    17. [17]

      [17] Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, 2007.

    18. [18]

      [18] M.J. Li, L. Liu, Y. Fu, et al., Significant effects of phosphorylation on relative stabilities of DNA and RNA sugar radicals: remarkably high susceptibility of H- 2’ abstraction in RNA, J. Phys. Chem. B 110 (2006) 13582-13589.

    19. [19]

      [19] M.J. Li, L. Liu, Y. Fu, et al., Development of an ONIOM-G3B3 method to accurately predict C-H and N-H bond dissociation enthalpies of ribonucleosides and deoxyribonucleosides, J. Phys. Chem. B 109 (2005) 13818-13826.

    20. [20]

      [20] D.X. Zhao, Z.Z. Yang, Investigation of the distinction between van der Waals interaction and chemical bonding based on the PAEM-MO diagram, J. Comput. Chem. 13 (2014) 965-977.

    21. [21]

      [21] D.X. Zhao, Z.Z. Yang, Theoretical exploration of the potential and force acting on one electron with a molecule, J. Phys. Chem. A 118 (2014) 9045-9057.

    22. [22]

      [22] X. Du, D.X. Zhao, Z.Z. Yang, Quick estimation of the Dpb for predicting the strength of chemical bond in situ, Chin. Chem. Lett. 24 (2013) 912-916.

    23. [23]

      [23] Z.Z. Yang, L.D. Gong, D.X. Zhao, The relations of bond length and force constant with the potential acting on an electron in a molecule, J. Phys. Chem. A 109 (2005) 10121-10128.

    24. [24]

      [24] X. Du, D.X. Zhao, Z.Z. Yang, Development of a method to accurately calculate the Dpb and quickly predict the strength of a chemical bond, Chem. Phys. 412 (2013) 84-91.

    25. [25]

      [25] X. Du, D.X. Zhao, Z.Z. Yang, An approximate approach to calculate the potential acting on an electron in a molecule and construct the molecular face, Comput. Theor. Chem. 1019 (2013) 61-70.

    26. [26]

      [26] G. Berthier, R. Bonaccorsi, E. Scrocco, et al., The electrostatic molecular potential for imidazole, pyrazole, oxazole and isoxazole, Theor. Chim. Acta (Berl.) 26 (1972) 101-105.

    27. [27]

      [27] X.F. Qin, F. Wang, H.S. Wu, Density functional studies of the stepwise substitution of pyrrole, furan, and thiophene with BCO, J. Mol. Model. 19 (2013) 2309-2315.

    28. [28]

      [28] G. Marino, Quantitative aspect of electrophilic substitution in furan, thiophene, pyrrole, and other five-membered heteroaromatic systems (review), Inst. Org. Chem. 5 (1973) 579-589.

    29. [29]

      [29] A.A. Mohammad, T. Mahdiyeh, Reaction of arylglyoxals with pyrrole or indole in aqueous media: facile synthesis of heteroaryl α-acyloins, J. Iran Chem. Soc. 11 (2014) 963-968.

    30. [30]

      [30] X.F. Qin, F. Wang, H.S. Wu, Density functional studies of the stepwise substitution of pyridine, pyridazine, pyrimidine, pyrazine, and 1,3,5-triazine with BCO, J. Mol. Model. 20 (2014) 2079-2085.

    31. [31]

      [31] E.R. Davidson, MELD Program Description in MOTECC, ESCOM, New York, 1990.

  • 加载中
    1. [1]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    5. [5]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    6. [6]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    7. [7]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    8. [8]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212

    9. [9]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    10. [10]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    11. [11]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    12. [12]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

    13. [13]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    14. [14]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    15. [15]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    16. [16]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    17. [17]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    18. [18]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    19. [19]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    20. [20]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

Metrics
  • PDF Downloads(0)
  • Abstract views(615)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return