Citation: Eun Joo Yoo, Boknam Chae, Young Mee Jung, Seung Woo Lee. pH-induced structural changes of surface immobilized poly(L-lysine) by two-dimensional (2D) infrared correlation study[J]. Chinese Chemical Letters, ;2015, 26(2): 173-176. doi: 10.1016/j.cclet.2014.12.012 shu

pH-induced structural changes of surface immobilized poly(L-lysine) by two-dimensional (2D) infrared correlation study

  • Corresponding author: Young Mee Jung,  Seung Woo Lee, 
  • Received Date: 4 November 2014
    Available Online: 15 December 2014

    Fund Project:

  • This paper reports the pH-induced structural changes in the surface immobilized poly(L-lysine) (PLL) film. Two-dimensional (2D) correlation analysis was applied to the Fourier transform infrared (FTIR) spectra of the surface-immobilized PLL filmto examine the spectral changes induced by the alternations of the protonation state of the amino group in the side chain. Significant spectral changes in the FTIR spectra of the PLL film were observed between pH 7 and 8. The decrease in the protonation state of the amino group in the side chain induced spectral changes in the amino group as well as conformational changes in the alkyl group in the side chain. From pH 1-8, the spectral changes in the amino and alkyl groups in the side chain occurred before those of the amide group in the main chain of the surface immobilized PLL film.
  • 加载中
    1. [1]

      [1] S. Edmondson, V.L. Osborne, W.T.S. Huck, Polymer brushes via surface-initiated polymerization, Chem. Soc. Rev. 33 (2004) 14-22.

    2. [2]

      [2] M. Doebbelin, G. Arias, I. Loinaz, et al., Tuning Surface Wettability of poly (3-sulfopropyl methacrylate) brushes by cationic surfactantdriven interactions, Macromol. Rapid Commun. 29 (2008) 871-875.

    3. [3]

      [3] O. Azzaroni, A.A. Brown, W.T.S. Huck, UCST wetting transitions of polyzwitterionic brushes driven by self-association, Angew. Chem. Int. Ed. 45 (2006) 1770-1774.

    4. [4]

      [4] I. Borukhov, I. Leibler, Enthalpic stabilization of brush-coated particles in a polymer melt, Macromolecules 35 (2002) 5171-5182.

    5. [5]

      [5] O. Azzaroni, Polymer brushes here, there, and everywhere: recent advances in their practical applications and emerging opportunities in multiple research fields, J. Polym. Sci. A: Polym. Chem. 50 (2012) 3225-3258.

    6. [6]

      [6] C.M. Hui, J. Pietrasik, M. Schmitt, et al., Surface-initiated polymerization as an enabling tool for multifunctional (nano-) engineered hybrid materials, Chem. Mater. 26 (2014) 745-762.

    7. [7]

      [7] R. Barbey, L. Lavanant, D. Paripovic, et al., Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications, Chem. Rev. 109 (2009) 5437-5527.

    8. [8]

      [8] Y. Tsujii, K. Ohno, S. Yamamoto, A. Goto, T. Fukuda, Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization, Adv. Polym. Sci. 197 (2006) 1-45.

    9. [9]

      [9] B. Zhao, W.J. Brittain, Polymer brushes: surface-immobilized macromolecules, J. Prog. Polym. Sci. 25 (2000) 677-710.

    10. [10]

      [10] K. Matyjaszewski, P.J. Miller, N. Shukla, et al., Polymers at interfaces: using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator, Macromolecules 32 (1999) 8716-8724.

    11. [11]

      [11] M. Baum, W.J. Brittain, Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique, Macromolecules 35 (2002) 610-615.

    12. [12]

      [12] C.D. Grande, M.C. Tria, G. Jiang, R. Ponnapati, R. Advincula, Surface-grafted polymers from electropolymerized polythiophene RAFT agent, Macromolecules 44 (2011) 966-975.

    13. [13]

      [13] A. Juang, O.A. Scherman, R.H. Grubbs, H. Robert, N.S. Lewis, Formation of covalently attached polymer overlayers on Si(1 1 1) surfaces using ring-opening metathesis polymerization methods, Langmuir 17 (2001) 1321-1323.

    14. [14]

      [14] H.A. Haque, S. Kakehi, M. Hara, S. Nagano, T. Seki, High-density liquid-crystalline azobenzene polymer brush attained by surface-initiated ring-opening metathesis polymerization, Langmuir 29 (2013) 7571-7575.

    15. [15]

      [15] B.J. Sparks, J.G. Ray, D.A. Savin, C.M. Stafford, D.L. Patton, Synthesis of thiolclickable and block copolypeptide brushes via nickel-mediated surface initiated polymerization of a-amino acid N-carboxyanhydrides (NCAs), Chem. Commun. 47 (2011) 6245-6247.

    16. [16]

      [16] H. Duran, B. Yameen, H.U. Khan, R. Fö rch, W. Knoll, Surface-initiated ring opening polymerization of N-carboxy anhydride of benzyl-L-glutamate monomers on soft flexible substrates, React. Funct. Polym. 73 (2013) 606-612.

    17. [17]

      [17] Y. Wang, Y.C. Chang, Preparation of unidirectional end-grafted a-helical polypeptides by solvent quenching, J. Am. Chem. Soc. 125 (2003) 6376-6377.

    18. [18]

      [18] Y. Wang, Y.C. Chang, Synthesis and conformational transition of surface-tethered polypeptide: poly(L-lysine), Macromolecules 36 (2003) 6511-6518.

    19. [19]

      [19] S.A. Curtin, T.J. Deming, Initiators for end-group functionalized polypeptides via tandem addition reactions, J. Am. Chem. Soc. 121 (1999) 7427-7428.

    20. [20]

      [20] J. Wang, M.I. Gibson, R. Barbey, S.-J. Xiao, H.-A. Klok, Nonfouling polypeptide brushes via surface-initiated polymerization of N-oligo(ethylene glycol) succinate-L-lysine N-carboxyanhydride, Macromol. Rapid Commun. 30 (2009) 845-850.

    21. [21]

      [21] R.J. Mart, R.D. Osborne, M.M. Stevens, R.V. Ulijn, Peptide-based stimuli-responsive biomaterials, Soft Matter 2 (2006) 822-835.

    22. [22]

      [22] H. Block, Poly (Gamma-Benzyl-L-Glutamate) and Other Glutamic Acid Containing Polymers, Gordon & Breach Science Publishers, New York, 1983.

    23. [23]

      [23] D. Kang, S.R. Ryu, Y. Park, B. Czarnik-Matusewicz, Y.M. Jung, pH-induced structural changes of ovalbumin studied by 2D correlation IR spectroscopy, J. Mol. Struct. 1069 (2014) 299-304.

    24. [24]

      [24] W. Dzwolark, V. Smirnovas, A conformational a-helix to b-sheet transition accompanies racemic self-assembly of polylysine: an FTIR spectroscopic study, Biophys. Chem. 115 (2005) 49-54.

    25. [25]

      [25] E.S. Manas, Z. Getahun, W.W. Wright, W.F. DeGrado, J.M. Vanderkooi, Infrared spectra of amide groups in a-helical proteins: evidence for hydrogen bonding between helices and water, J. Am. Chem. Soc. 122 (2000) 9883-9890.

    26. [26]

      [26] M. Rozenberg, G. Shoham, FTIR spectra of solid poly-L-lysine in the stretching NH mode range, Biophys. Chem. 125 (2007) 166-171.

    27. [27]

      [27] I. Noda, Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy, Appl. Spectrosc. 47 (1993) 1329-1336.

    28. [28]

      [28] B. Chae, S.W. Lee, M. Ree, Y.M. Jung, S.B. Kim, Photoreaction and molecular reorientation in a nanoscaled film of poly(methyl 4-(methacryloyloxy) cinnamate) studied by two-dimensional FTIR and UV correlation spectroscopy, Langmuir 19 (2003) 687-695.

    29. [29]

      [29] Y. Ozaki, Kwansei Gakuin University, Sanda, Japan. http://science.kwansei.ac.jp/ ozaki/.

    30. [30]

      [30] A. Dos, V. Schimming, S. Tosoni, H.-H. Limbach, Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations, J. Phys. Chem. B 112 (2008) 15604-15615.

    31. [31]

      [31] Y.P. Myer, The pH-induced helix-coil transition of poly-L-lysine and poly-Lglutamic acid and the 238 mm dichroic band, Macromolecues 2 (1969) 624-628.

    32. [32]

      [32] L. Sun, R.M. Crooks, A.J. Ricco, Molecular Interactions between organized, surfaceconfined monolayers and vapor-phase probe molecules. 5. Acid-base interactions, Langmuir 9 (1993) 1775-1780.

    33. [33]

      [33] S.C. Yasui, T.A. Keiderling, Vibrational circular dichroism of polypeptides. 8. Poly(lysine) conformations as a function of pH in aqueous solution, J. Am. Chem. Soc. 108 (1986) 5576-5581.

  • 加载中
    1. [1]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    2. [2]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    3. [3]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    4. [4]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    5. [5]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    6. [6]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    7. [7]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    8. [8]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    9. [9]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    10. [10]

      Jinwei Zhang Lipiao Bao Xing Lu . Synthesis methodologies of conductive 2D conjugated metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(4): 100459-100459. doi: 10.1016/j.cjsc.2024.100459

    11. [11]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    12. [12]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    13. [13]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    14. [14]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    15. [15]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    16. [16]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    17. [17]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    18. [18]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    19. [19]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    20. [20]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

Metrics
  • PDF Downloads(0)
  • Abstract views(643)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return