Citation: Xiao-Hua Hu, Jia-Chuan Pan, Dan Wang, Wen Zhong, Hao-Yuan Wang, Lin-Yi Wang. Quantum-chemical study on the catalytic activity of TinRumO2(1 1 0) surfaces on chlorine evolution[J]. Chinese Chemical Letters, ;2015, 26(5): 595-598. doi: 10.1016/j.cclet.2014.12.011 shu

Quantum-chemical study on the catalytic activity of TinRumO2(1 1 0) surfaces on chlorine evolution

  • Corresponding author: Xiao-Hua Hu, 
  • Received Date: 10 August 2014
    Available Online: 8 December 2014

    Fund Project: We are grateful to the Natural Science Foundation of China (No. 51072239) (No. 51072239)the Fundamental Research Funds for the Central Universities (No. CQDXWL-2012-032) for financial support. (No. CQDXWL-2012-032)

  • Based on the generalized gradient approximation (GGA), Perdew-Wang-91 (PW91) combined with a periodic slab model has been applied to study the catalytic activity of chlorine evolution on TinRumO2(1 1 0) surface. Metal oxide model TinRumO2 has been established with pure TiO2 and RuO2 on the basis set of Double Numerical plus polarization (DNP), in which the proportion of n:m was 3:1, 1:1, or 1:3. Analysis on the reaction activity in the electrochemical reaction and the electrochemical desorption reaction was based on Frontiermolecular orbital theory. The results show that the TinRumO2 with a ratio of Ti:Ru at 3:1 is best facilitates the electrochemical reaction and electrochemical desorption reaction to produce M-Clads intermediate and precipitate Cl2. In addition, the adsorption energy of Cl on the surface of Ti3Ru1O2 possesses the minimum value of 2.514 eV, and thus electrochemical desorption reaction could occur most easily.
  • 加载中
    1. [1]

      [1] S. Trasatti, Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochim. Acta 29 (1984) 1503-1512.

    2. [2]

      [2] M.V. Makarova, J. Jirkovský,M. Klementová, et al., The electrocatalytic behavior of Ru0.8Co0.2OM2-x - the effect of particle shape and surface composition, Electrochim. Acta 53 (2008) 2656-2664.

    3. [3]

      [3] Y.V. Pleskov, M.D. Krotova, V.I. Polyakov, et al., Electrochemical properties of amorphous nitrogen-containing hydrogenated diamondlike-carbon films, Russ. J. Electrochem. 36 (2008) 1008-1013.

    4. [4]

      [4] K. Endo, Y. Katayama, T. Miura, T. Kishi, Composition dependence of the oxygenevolution reaction rate on IrxTi1 xO2 mixed-oxide electrodes, J. Appl. Electrochem. 32 (2002) 173-178.

    5. [5]

      [5] J. Ribeiro, P.D.P. Alves, A.R. de Andrade, Effect of the preparation methodology on some physical and electrochemical properties of Ti/IrxSn(1-x)O2 materials, J. Mater. Sci. 42 (2007) 9293-9299.

    6. [6]

      [6] F.H. Oliveira, M.E. Osugi, F.M.M. Paschoal, et al., Electrochemical oxidation of an acid dye by active chlorine generated using Ti/Sn(1-x)O2 electrodes, J. Appl. Electrochem. 37 (2007) 583-592.

    7. [7]

      [7] V.G. Lourdes, H. Erzsébet, K. János, R. Ákos, D.B. Achille, Investigation of IrO2/SnO2 thin film evolution from aqueous media, Appl. Surf. Sci. 253 (2006) 1178-1184.

    8. [8]

      [8] K. Macounova, M. Makarova, J. Jirkovsky, J. Franc, P. Krtil, Parallel oxygen and chlorine evolution on Ru1-xNixO2-y nanostructured electrodes, Electrochim. Acta 53 (2008) 6126-6134.

    9. [9]

      [9] V.G. Lourdes, F. Sergio, D.B. Achille, Preparation and characterization of RuO2- IrO2-SnO2 ternary mixtures for advanced electrochemical technology, Appl. Catal. B: Environ. 67 (2006) 34-40.

    10. [10]

      [10] J.L. Fernández, M.R. Gennero De Chialvo, A.C. Chialvo, Preparation and electrochemical characterization of TiRuxMn1-xO2 electrodes, J. Appl. Electrochem. 32 (2002) 513-520.

    11. [11]

      [11] J.L. Fernández, M.R. Gennero De Chialvo, A.C. Chialvo, Ruthenium dioxide films on titanium wire electrodes by spray pyrolysis: preparation and electrochemical characterization, J. Appl. Electrochem. 27 (1997) 1323-1327.

    12. [12]

      [12] M. Aparicio, L.C. Klein, Thin and thick RuO2-TiO2 coatings on titanium substrates by the sol-gel process, J. Sol-Gel Sci. Technol. 29 (2004) 81-88.

    13. [13]

      [13] L. Armelao, D. Barreca, B. Moraru, A molecular approach to RuO2-based thin films: sol-gel synthesis and characterisation, J. Non-Cryst. Solids 316 (2003) 364-371.

    14. [14]

      [14] M. Metikoš-Hukvić, R. Babić, F. Jović, Z. Grubač, Anodically formed oxide films and oxygen reduction on electrodeposited ruthenium in acid solution, Electrochim. Acta 51 (2006) 1157-1164.

    15. [15]

      [15] V. Briss, R. Myers, H. Angerstein-Kozlowska, B.E. Conway, Electron microscopy study of formation of thick oxide films on Ir and Ru electrodes, J. Electrochem. Soc. 131 (1984) 1502-1510.

    16. [16]

      [16] M. Hiratani, Y. Matsui, K. Imagawa, S. Kimura, Growth of RuO2 thin films by pulsed-laser deposition, Thin Solid Films 366 (2000) 102-106.

    17. [17]

      [17] R. Kö tz, S. Stucki, Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media, Electrochim. Acta 31 (1986) 1311-1316.

    18. [18]

      [18] J. Kawakita, M. Stratmann, A.W. Hasselb, High voltage pulse anodization of a NiTi shape memory alloy, J. Electrochem. Soc. 154 (2007) C294-C298.

    19. [19]

      [19] S. Trasatti, W.E.O. Grady, Mechanism of chlorine evolution on oxide anodes study of pH effects, J. Electroanal. Chem. Interfac. Electrochem. 228 (1987) 393-406.

    20. [20]

      [20] S. Trasatti, G. Lodi, Electrodes of Conductive Metallic Oxides, Elsevier, New York, 1980, pp. 301-358.

    21. [21]

      [21] T. Hepel, F.H. Pollak, W.E. O’Grady, Chlorine evolution and reduction processes at oriented single-crystal RuO2 electrodes, J. Electrochem. Soc. 133 (1986) 69-75.

  • 加载中
    1. [1]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    2. [2]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    3. [3]

      Shunyu WangYanan ZhuYang ZhaoWanli NieHong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555

    4. [4]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    5. [5]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    6. [6]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    7. [7]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    8. [8]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    9. [9]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    10. [10]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    11. [11]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    12. [12]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    13. [13]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    14. [14]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    15. [15]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    16. [16]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    17. [17]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    18. [18]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    19. [19]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    20. [20]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

Metrics
  • PDF Downloads(0)
  • Abstract views(731)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return