Citation: Qian-Tao Shi, Wei Yan. Adsorption of arsenate on lanthanum-impregnated activated alumina: In situ ATR-FTIR and two-dimensional correlation analysis study[J]. Chinese Chemical Letters, ;2015, 26(2): 200-204. doi: 10.1016/j.cclet.2014.12.009 shu

Adsorption of arsenate on lanthanum-impregnated activated alumina: In situ ATR-FTIR and two-dimensional correlation analysis study

  • Corresponding author: Wei Yan, 
  • Received Date: 30 September 2014
    Available Online: 1 December 2014

    Fund Project: This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB14020201) (No. XDB14020201) the National Basic Research Program of China (No. 2014CB441102) (No. 2014CB441102) the National Natural Science Foundation of China (No. 21477144) (No. 21477144)

  • Lanthanum modified materials have been widely used for the removal of hazardous anions. In this study, in situ ATR-FTIR and two-dimensional correlation analysis were employed to investigate the adsorption mechanism of arsenate (As(V)) on lanthanum-impregnated activated alumina (LAA). Our results showed that electrostatic interaction attracted As(V) anions to the LAA surface, and then As(V) could form monodentate configuration on the LAA surface at pH 5-9. The result of 2D-COS showed that two coexistent adsorbed As(V) species, H2AsO4- and HAsO4-2, were adsorbed on the LAA surface without specific sequence at different pH conditions, indicating a negligible role of the incorporated protons of As(V) on the adsorption affinity to LAA surface. The results of this study reveal insights into LAA surface complexes on the molecular scale and provide theoretical support to new metal oxides design for efficient arsenic removal.
  • 加载中
    1. [1]

      [1] Y. Meng, J.N. Wang, C. Cheng, X. Yang, A.M. Li, Preparation of new base-aluminumchloride-loaded fiber as adsorbent for fast removal of arsenic(V) from water, Chin. Chem. Lett. 23 (2012) 863-866.

    2. [2]

      [2] G.H. Zhu, Z.M. Li, X.H. Chen, et al., Determination of trace arsenic(V) by catalytic solid substrate-room temperature phosphorescence quenching method, Chin. Chem. Lett. 18 (2007) 711-713.

    3. [3]

      [3] X.L. Wu, X.L. Tan, S.T. Yang, et al., Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides, Water Res. 47 (2013) 4159-4168.

    4. [4]

      [4] S.A. Wasay, J. Haron, S. Tokunaga, Adsorption of fluoride, phosphate, and arsenate ions on lanthanum impregnated silica gel, Water Environ. Res 68 (1996) 295-300.

    5. [5]

      [5] Q.T. Shi, Y.Y. Huang, C.Y. Jing, Synthesis, characterization and application of lanthanum-impregnated activated alumina for F removal, J. Mater. Chem. A 1 (2013) 12797-12803.

    6. [6]

      [6] W.Y. Huang, Y. Zhu, J.P. Tang, et al., Lanthanum-doped ordered mesoporous hollow silica spheres as novel adsorbents for efficient phosphate removal, J. Mater. Chem. A 2 (2014) 8839-8848.

    7. [7]

      [7] M.R. Gandhi, S. Meenakshi, Preparation and characterization of La(III) encapsulated silica gel/chitosan composite and its metal uptake studies, J. Hazard. Mater. 203 (2012) 29-37.

    8. [8]

      [8] F. Zaera, Probing liquid/solid interfaces at the molecular level, Chem. Rev. 112 (2012) 2920-2986.

    9. [9]

      [9] E.J. Elzinga, R. Kretzschmar, In situ ATR-FTIR spectroscopic analysis of the coadsorption of orthophosphate and Cd(II) onto hematite, Geochim. Cosmochim. Acta 117 (2013) 53-64.

    10. [10]

      [10] I. Noda, Two-dimensional infrared-spectroscopy, J. Am. Chem. Soc. 111 (1989) 8116-8118.

    11. [11]

      [11] I. Noda, Two-dimensional correlation spectroscopy-biannual survey, 2007-2009, J. Mol. Struct. 974 (2010) 3-24.

    12. [12]

      [12] W. Yan, J.F. Zhang, C.Y. Jing, Adsorption of enrofloxacin on montmorillonite: twodimensional correlation ATR/FTIR spectroscopy study, J. Colloid Interf. Sci. 390 (2013) 196-203.

    13. [13]

      [13] Y.L. Yang, W. Yan, C.Y. Jing, Dynamic adsorption of catechol at the goethite/aqueous solution interface: a molecular-scale study, Langmuir 41 (2012) 14588-14597.

    14. [14]

      [14] M. Pena, X.G.Meng, G.P. Korfiatis, C.Y. Jing, Adsorptionmechanismof arsenic on nanocrystalline titanium dioxide, Environ. Sci. Technol. 40 (2006) 1257-1262.

    15. [15]

      [15] S.C.B. Myneni, S.J. Traina, G.A. Waychunas, T.J. Logan, Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces, Geochim. Cosmochim. Acta 62 (1998) 3285-3300.

    16. [16]

      [16] S.C.B. Myneni, S.J. Traina, G.A. Waychunas, T.J. Logan, Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite, Geochim. Cosmochim. Acta 62 (1998) 3499-3514.

    17. [17]

      [17] J.S. Loring, M.H. Sandstrom, K. Noreńn, P. Persson, Rethinking arsenate coordination at the surface of goethite, Chem.-Eur. J. 15 (2009) 5063-5072.

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    3. [3]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    4. [4]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    5. [5]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    6. [6]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    7. [7]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    8. [8]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    9. [9]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    10. [10]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    11. [11]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    12. [12]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    13. [13]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    14. [14]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    15. [15]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    16. [16]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    17. [17]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    18. [18]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

Metrics
  • PDF Downloads(0)
  • Abstract views(654)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return