Citation:
Su-Hua Fan, Jie Shen, Hai Wu, Ke-Zhi Wangb, An-Guo Zhang. A highly selective turn-on colorimetric and luminescence sensor based on a triphenylamine-appended ruthenium(II) dye for detecting mercury ion[J]. Chinese Chemical Letters,
;2015, 26(5): 580-584.
doi:
10.1016/j.cclet.2014.11.031
-
A dual colorimetric and luminescent sensor based on a heteroleptic ruthenium dye [Ru(Hipdpa)(Hdcbpy)(NCS)2]-·0.5H+0.5[N(C4H9)4]+ Ru(Hipdpa) {where Hdcbpy = monodeprotonted-4,4'-dicarboxy-2,2'- bipyridine and Hipdpa = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline} for selective detection of Hg2+ is presented. The results of spectrophotometric titrations revealed an evident luminescence intensity enhancement (I/I0 = 11) and a considerable blue shift in visible absorption and luminescence maxima with the addition of Hg2+. The sensitive response of the optical sensor on Hg2+ was attributed to the binding of the electron-deficient Hg2+ to the electron-rich sulfur atom of the thiocyanate (NCS) ligand in the Ru(Hipdpa), which led to an increase in the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Accordingly, the blue shift in the absorption spectrum of Ru(Hipdpa) due to the binding of Hg2+ was obtained. Ru(Hipdpa) was found to have decreased Hg2+ detection limit and improved linear region as compared to di(tetrabutylammonium) cis-bis(isothiocyanato)bis(2,2'-bipyridine-4-carboxylic acid-4'- carboxylate)ruthenium(II) N719. Moreover, a dramatic color change from pink to yellow was observed, which allowed simple monitoring of Hg2+ by either naked eyes or a simple colorimetric reader. Therefore, the proposed sensor can provide potential applications for Hg2+ detection.
-
Keywords:
- Ruthenium dye,
- Mercury,
- Colorimetric sensor,
- Luminescence sensor
-
-
-
[1]
[1] H.H. Harris, I.J. Pickering, G.N. George, The chemical form of mercury in fish, Science 301 (2003) 1203.
-
[2]
[2] M.S. Gustin, M. Coolbaugh, M. Engle, et al., Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains, Environ. Geol. 43 (2003) 339-351.
-
[3]
[3] C.M.L. Carvalho, E.H. Chew, S.I. Hashemy, J. Lu, A. Holmgren, Inhibition of the human thioredoxin system: a molecular mechanism of mercury toxicity, J. Biol. Chem. 283 (2008) 11913-11923.
-
[4]
[4] T.W. Clarkson, L. Magos, G.J. Myers, The toxicology of mercury-current exposures and clinical manifestations, N. Engl. J. Med. 349 (2003) 1731-1737.
-
[5]
[5] G.J. Myers, P.W. Davidson, C. Cox, et al., Summary of the seychelles child development study on the relationship of fetal methylmercury exposure to neurodevelopment, Neurotoxicology 16 (1995) 711-716.
-
[6]
[6] M. Harada, Minamata disease: methylmercury poisoning in Japan caused by environmental pollution, Crit. Rev. Toxicol. 25 (1995) 1-24.
-
[7]
[7] H.N. Kim, W.X. Ren, J.S. Kim, J. Yoon, Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions, Chem. Soc. Rev. 41 (2012) 3210- 3244.
-
[8]
[8] J.O. Moon, M.G. Choi, T. Sun, J.I. Choe, S.K. Chang, Synthesis of thionaphthalimides and their dual Hg2+-selective signaling by desulfurization of thioimides, Dyes Pigment 96 (2013) 170-175.
-
[9]
[9] X.J. Jiang, C.L. Wong, P.C. Lo, K.P. Ng Dennis, A highly selective and sensitive BODIPY-based colourimetric and turn-on fluorescent sensor for Hg2+ ions, Dalton Trans. 41 (2012) 1801-1807.
-
[10]
[10] S. Maiti, C. Pezzato, S.G. Martin, L.J. Prins, Multivalent interactions regulate signal transduction in a self-assembled Hg2+ sensor, J. Am. Chem. Soc. 136 (2014) 11288-11291.
-
[11]
[11] J.F. Li, Y.Z. Wu, F.Y. Song, et al., A highly selective and sensitive polymer-based OFF-ON fluorescent sensor for Hg2+ detection incorporating salen and perylenyl moieties, J. Mater. Chem. 22 (2012) 478-482.
-
[12]
[12] Y.C. Chen, C.C. Zhu, Z.H. Yang, et al., A new "turn-on" chemodosimeter for Hg2+: ICT fluorophore formation via Hg2+-induced carbaldehyde recovery from 1,3- dithiane, Chem. Commun. 48 (2012) 5094-5096.
-
[13]
[13] Z.Q. Hu, W.M. Zhuang, M. Li, et al., Highly sensitive and selective turn-on fluorescent chemodosimeter for Hg2+ based on thiorhodamine 6G-amide and its applications for biological imaging, Dyes Pigments 98 (2013) 286-289.
-
[14]
[14] L. Wang, X.J. Zhu, W.Y. Wong, et al., Dipyrrolylquinoxaline-bridged Schiff bases: a new class of fluorescent sensors for mercury(II), Dalton Trans. (19) (2005) 3235- 3240.
-
[15]
[15] Z.K. Wu, Zhang Y.F., J.S. Ma, G.Q. Yang, Ratiometric Zn2+ sensor and strategy for Hg2+ selective recognition by central metal ion replacement, Inorg. Chem. 45 (2006) 3140-3142.
-
[16]
[16] Z. Gu, M. Zhao, Y. Sheng, L.A. Bentolila, Y. Tang, Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay, Anal. Chem. 83 (2011) 2324-2329.
-
[17]
[17] X. Ma, F.Y. Song, L. Wang, Y.X. Cheng, C.J. Zhu, Polymer-based colorimetric and "turn off" fluorescence sensor incorporating benzo[2,1,3]thiadiazole moiety for Hg2+ detection, J. Polym. Sci. Part A: Polym. Chem. 50 (2012) 517-522.
-
[18]
[18] K. Rurack, M. Kollmannsberger, U. Resch-Genger, J. Daub, A selective and sensitive fluoroionophore for HgII, AgI , and CuII with virtually decoupled fluorophore and receptor units, J. Am. Chem. Soc. 122 (2000) 968-969.
-
[19]
[19] X.M. Wang, H. Yan, X.L. Feng, Y. Chen, 1-Pyrenecarboxaldehyde thiosemicarbazone: a novel fluorescent molecular sensor towards mercury (II) ion, Chin. Chem. Lett. 21 (2010) 1124-1128.
-
[20]
[20] E. Coronado, J.R. Galán-Mascarós, C. Martí-Gastaldo, et al., Reversible colorimetric probes for mercury sensing, J. Am. Chem. Soc. 127 (2005) 12351-12356.
-
[21]
[21] A.Reynal, J. Albero, A. Vidal-Ferran, E. Palomares, Diastereoselectivity andmolecular recognition of mercury(II) ions, Inorg. Chem. Commun. 12 (2009) 131-134.
-
[22]
[22] W.C. Yang, S.H. Fan, K.Z. Wang, Optically highly selective sensing of fluoride ion by N3 dye, Acta Phys. Chim. Sin. 24 (2008) 1313-1315.
-
[23]
[23] X.H. Li, X.F. Duan, F.Y. Li, C.H. Huang, Synthesis of new mixed-ligands amphiphilic ruthenium complex and its naked-eye detecable recognition of Hg2+, Chem. J. Chin. Univ. 27 (2006) 419-423.
-
[24]
[24] S.H. Fan, A.G. Zhang, C.C. Ju, L.H. Gao, K.Z. Wang, A triphenylamine-grafted imidazo[4,5-f][1,10]phenanthroline ruthenium(II) complex: acid-base and photoelectric properties, Inorg. Chem. 49 (2010) 3752-3763.
-
[25]
[25] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 03, Inc, Pittsburgh, PA, 2003.
-
[26]
[26] P. Job, Formation and stability of inorganic complexes in solution, Ann. Chim. 9 (1928) 113-203.
-
[27]
[27] M. Zhang, M.Y. Li, F.Y. Li, et al., A novel Y-type two-photon active fluorophore: synthesis and appliciation in ratiometric fluorescent sensosr for fluoride anion, Dyes Pigment 77 (2008) 408-414.
-
[28]
[28] D.Q. Shi, H.Y. Wang, X.Y. Li, et al., Novel N,N'-diacylhydrazine-based colorimetric receptors for selective sensing of fluoride and acetate anions, Chin. J. Chem. 25 (2007) 973-976.
-
[29]
[29] R.G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc. 85 (1963) 3533- 3539.
-
[1]
-
-
-
[1]
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
-
[2]
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
-
[3]
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
-
[4]
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
-
[5]
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
-
[6]
Xiangshuai Li , Jian Zhao , Li Luo , Zhuohao Jiao , Ying Shi , Shengli Hou , Bin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407
-
[7]
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
-
[8]
Qinghong Pan , Huafang Zhang , Qiaoling Liu , Donghong Huang , Da-Peng Yang , Tianjia Jiang , Shuyang Sun , Xiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169
-
[9]
Yubin Feng , Weihang Zhu , Xinting Yang , Zhe Yang , Chenke Wei , Yukai Guo , Andrew K. Whittaker , Chun Shen , Yue Zhao , Wenrui Qu , Bai Yang , Quan Lin . Amphibian-inspired conductive ionogel stabilizing in air/water as a wearable amphibious flexible sensor for drowning alarms. Chinese Chemical Letters, 2025, 36(4): 110554-. doi: 10.1016/j.cclet.2024.110554
-
[10]
Yijian Zhao , Jvzhe Li , Yunyi Shi , Jie Hu , Meiyi Liu , Yao Shen , Xinglin Hou , Qiuyue Wang , Qi Wang , Zhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132
-
[11]
Ren Shen , Yanmei Fang , Chunxiao Yang , Quande Wei , Pui-In Mak , Rui P. Martins , Yanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143
-
[12]
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
-
[13]
Junying LI , Xinyan CHEN , Xihui DIAO , Muhammad Yaseen , Chao CHEN , Hao WANG , Chuansong QI , Wei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084
-
[14]
Kezuo Di , Jie Wei , Lijun Ding , Zhiying Shao , Junling Sha , Xilong Zhou , Huadong Heng , Xujing Feng , Kun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911
-
[15]
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
-
[16]
Jiao Chen , Zihan Zhang , Guojin Sun , Yudi Cheng , Aihua Wu , Zefan Wang , Wenwen Jiang , Fulin Chen , Xiuying Xie , Jianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050
-
[17]
Xudong Zhao , Yuxuan Wang , Xinxin Gao , Xinli Gao , Meihua Wang , Hongliang Huang , Baosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901
-
[18]
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
-
[19]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[20]
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(606)
- HTML views(3)