Citation: Ming-Yu Li, Shi-Chao Cheng, Dan Li, Shen-Nan Wang, An-Min Huang, Su-Qin Sun. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy[J]. Chinese Chemical Letters, ;2015, 26(2): 221-225. doi: 10.1016/j.cclet.2014.11.024 shu

Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy

  • Corresponding author: An-Min Huang, 
  • Received Date: 3 September 2014
    Available Online: 13 November 2014

    Fund Project: This work was sponsored by the National Natural Science Foundation of China (No. 31270591) (No. 31270591)

  • The properties of wood can be improved through steam-heat treatment. There are many studies about mechanical properties of steam-heat treated wood, but very few studies are on the aspects of chemical modifications. In this study, FT-IR spectra combined with SD-IR spectra, correlation coefficients and 2DIR spectra are employed to analyze the chemicalmodifications of teak (Tectona grandis L.F.) wood during steam-heat treatment under treatment temperatures from 120℃ to 220℃ at intervals of 20℃. Acetic acid, which is produced during steam-heat treatment, acts as a catalyst of condensation and degradation reactions of wood components. The changes of wood components are more and more intense with increasing the treatment temperature. The sensitivity of wood samples to thermal perturbation rises initially with increasing treatment temperature before falling back. The steam-heat treated wood under 180℃ is the most sensitive.
  • 加载中
    1. [1]

      [1] C.-M. Popescu, M.-C. Popescu, A near infrared spectroscopic study of the structural modifications of lime (Tilia cordata Mill.) wood during hydro-thermal treatment, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 115 (2013) 227-233.

    2. [2]

      [2] P. Navi, D. Sandberg, Thermo-hydro-mechanical Wood Processing, CRC Press, Boca Raton, 2012.

    3. [3]

      [3] B.M. Esteves, H.M. Pereira, Wood modification by heat treatment: a review, Bioresources 4 (2009) 370-404.

    4. [4]

      [4] B. Esteves, J. Graca, H. Pereira, Extractive composition and summative chemical analysis of thermally treated eucalypt wood, Holzforschung 62 (2008) 344-351.

    5. [5]

      [5] Y.J. Cao, J.X. Lu, R.F. Huang, X. Zhao, J.L. Jiang, Effect of steam-heat treatment on mechanical properties of Chinese fir, Bioresources 7 (2012) 1123-1133.

    6. [6]

      [6] B. Esteves, R. Videira, H. Pereira, Chemistry and ecotoxicity of heat-treated pine wood extractives, Wood Sci. Technol. 45 (2011) 661-676.

    7. [7]

      [7] M.-C. Popescu, J. Froidevaux, P. Navi, C.-M. Popescu, Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy, J. Mol. Struct. 1033 (2013) 176-186.

    8. [8]

      [8] S.Q. Sun, Q. Zhou, J.B. Chen, Infrared Spectroscopy for Complex Mixtures-Applications in Food and Traditional Chinese Medicine, Chemical Industry Press, Beijing, 2011.

    9. [9]

      [9] Z. Yang, H. Lin, T. Gui, R.F. Zhou, X.S. Chen, Infrared spectroscopy of N-methylacetamide in water from high-level QM/MM calculations, Chin. Chem. Lett. 25 (2014) 107-110.

    10. [10]

      [10] X.Q. Lin, Z.X. Zhang, W.Q. Hu, Concave cell design for FTIR measurements, Chin. Chem. Lett. 22 (2011) 1339-1342.

    11. [11]

      [11] C.-M. Popescu, B.C. Simionescu, Structural study of photodegraded acrylic-coated lime wood using Fourier transform infrared and two-dimensional infrared correlation spectroscopy, Appl. Spectrosc. 67 (2013) 606-613.

    12. [12]

      [12] C.-M. Popescu, M.-C. Popescu, C. Vasile, Structural changes in biodegraded lime wood, Carbohydr. Polym. 79 (2010) 362-372.

    13. [13]

      [13] H.L. Liu, J. Shang, X.Q. Chen, F.A. Kamke, K.Q. Guo, The influence of thermal-hydromechanical processing on chemical characterization of Tsuga heterophylla, Wood Sci. Technol. 48 (2014) 373-392.

    14. [14]

      [14] I. Noda, Two-dimensional infrared (2-D IR) spectroscopy of synthetic and biopolymers, Bull. Am. Phys. Soc. 31 (1986) 520.

    15. [15]

      [15] Q. Zhou, J.B. Chen, S.Q. Sun, What can two-dimensional correlation infrared spectroscopy (2D-IR) tell us about the composition, origin and authenticity of herbal medicines, Biomed. Spectrosc. Imaging 2 (2013) 101-113.

    16. [16]

      [16] A.M. Huang, Q. Zhou, J.L. Liu, B.H. Fei, S.Q. Sun, Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy, J. Mol. Struct. 833-834 (2008) 160-166.

    17. [17]

      [17] C.-M. Popescu, M.-C. Popescu, C. Vasile, Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy, Int. J. Biol. Macromol. 48 (2011) 667-675.

    18. [18]

      [18] C.-M. Popescu, M.-C. Popescu, C. Vasile, Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy, Microchem. J. 95 (2010) 377-387.

    19. [19]

      [19] T. Kondo, Polysaccharides II—structural diversity and functional versatility, in: S. Dumitriu (Ed.), Hydrogen Bonds in Cellulose and Cellulose Derivatives, Marcel Dekker, New York, 2005 (Chapter 3).

    20. [20]

      [20] S. Kubo, J.F. Kadla, Hydrogen bonding in lignin: a Fourier transform infrared model compound study, Biomacromolecules 6 (2005) 2815-2821.

    21. [21]

      [21] E. Windeisen, G. Wegener, Behaviour of lignin during thermal treatments of wood, Ind. Crop Prod. 27 (2008) 157-162.

    22. [22]

      [22] Y. Chen, Y. Fan, J. Gao, N.M. Stark, The effect of heat treatment on the chemical and color change of black locust (Robinia pseudoacacia) wood flour, Bioresources 7 (2012) 1157-1170.

    23. [23]

      [23] O. Faix, Fourier Transform Infrared Spectroscopy, Methods in Lignin Chemistry, Springer, Berlin/Heidelberg, 1992, pp. 83-109.

    24. [24]

      [24] O. Faix, J.H. Bö ttcher, The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood, Eur. J. Wood Wood Prod. 50 (1992) 221-226.

    25. [25]

      [25] M.M. Gonzá lez-Penã, M.D.C. Hale, Rapid assessment of physical properties and chemical composition of thermally modified wood by mid-infrared spectroscopy, Wood Sci. Technol. 45 (2011) 83-102.

  • 加载中
    1. [1]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    2. [2]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    3. [3]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    4. [4]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    5. [5]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    6. [6]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    7. [7]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    8. [8]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    9. [9]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    10. [10]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    11. [11]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    12. [12]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    13. [13]

      Pei HuangWeijie ZhangJunping WangFangjun HuoCaixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778

    14. [14]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    15. [15]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    16. [16]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    17. [17]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    18. [18]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    19. [19]

      Bin Chen Chaoyang Zheng Dehuan Shi Yi Huang Renxia Deng Yang Wei Zheyuan Liu Yan Yu Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(0)
  • Abstract views(717)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return