Citation: Mian Dou, Xi-Hui He, Yan Sun, Fang Peng, Jiang-Yun Liu, Li-Li Hao, Shi-Lin Yang. Controlled acid hydrolysis and kinetics of flavone C-glycosides from trollflowers[J]. Chinese Chemical Letters, ;2015, 26(2): 255-258. doi: 10.1016/j.cclet.2014.11.021 shu

Controlled acid hydrolysis and kinetics of flavone C-glycosides from trollflowers

  • Corresponding author: Jiang-Yun Liu, 
  • Received Date: 14 June 2014
    Available Online: 29 September 2014

    Fund Project: This work was supported by National Natural Science Foundation of China (No. 81274190) (No. 81274190) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). (No. BE2012649)

  • Acid hydrolysis mechanisms of orientin-2″-O-galactopyranoside (OGA), orientin and other flavone C-glycosides in the trollflowers (Trollius chinensis Bunge) were studied in this report for the first time. Hydrolysis parameters including temperature, acidity, solvent and reaction time were comprehensively investigated. OGA could be hydrolyzed to orientin, followed by an isomerization to isoorientin to isoorientin via a reversible Wessely-Moser rearrangement reaction under stronger acidic conditions. A first-order kinetic model fitted the hydrolysis process of OGA well. Under the optimal hydrolysis conditions of 80℃, 1.0 mol/L H+ and 7 h reaction time, about 77% OGA was transformed to orientin with no detectable isoorientin. These results could be helpful for better understanding of the acid hydrolysis kinetics of flavone C-glycosides, as well as the preparation of these valuable components under controlled acid hydrolysis conditions.
  • 加载中
    1. [1]

      [1] Chinese Pharmacopeia Committee, Chinese Pharmacopeia (Part I), China Medical Science and Technology Press, Beijing, 2010, p. 372 (Hawthorn leave extract); 828 (Trollflower throat lozenge).

    2. [2]

      [2] Y. Zhang, B. Bao, B. Lu, et al., Determination of flavone C-glucosides in antioxidant of bamboo leaves (AOB) fortified foods by reversed phase high-performance liquid chromatography with ultraviolet diode arraydetection, J. Chromatogr. A 1065 (2005) 177-185.

    3. [3]

      [3] R.F. Wang, X.W. Yang, C.M. Ma, Trolliside, a new compound from the flowers of Trollius chinensis, J. Asian Nat. Prod. Res. 6 (2004) 139-144.

    4. [4]

      [4] (a) J.H. Zou, J.S. Yang, L. Zhou, Acylated flavone C-glycosides from Trollius Ledebouri, J. Nat. Prod. 67 (2004) 664-666; (b) J.H. Zou, J.S. Yang, Y.S. Dong, L. Zhou, G. Lin, Flavone C-glycosides from flowers of Trollius ledebouri, Phytochemistry 66 (2005) 1121-1125.

    5. [5]

      [5] S.Q. Cai, R. Wang, X. Yang, et al., Antiviral flavonoid-type C-glycosides from the flowers of Trollius chinensis, Chem. Biodivers. 3 (2006) 343-348.

    6. [6]

      [6] X.Q. Li, Z.L. Xiong, X.X. Ying, et al., A rapid ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometric method for the qualitative and quantitative analysis of the constituents of the flower of Trollius ledibouri Reichb, Anal. Chim. Acta 580 (2006) 170-180.

    7. [7]

      [7] Y. Zhang, X. Tie, B. Bao, X. Wu, Y. Zhang, Metabolism of flavone C-glucosides and pcoumaric acid from antioxidant of bamboo leaves (AOB) in rats, Br. J. Nutr. 97 (2007) 484-494.

    8. [8]

      [8] N. Krafczyk, M.A. Glomb, Characterization of phenolic compounds in rooibos tea, J. Agric. Food Chem. 56 (2008) 3368-3376.

    9. [9]

      [9] A.K. Verma, R. Pratap, Chemistry of biologically important flavones, Tetrahedron 68 (2012) 8523-8538.

    10. [10]

      [10] J.Y. Liu, J.Y. Feng, S.Y. Li, et al., Flavone C-glycosides from the flowers of Trollius chinensis and their anti-complementary activity, J. Asian Nat. Prod. Res. 15 (2013) 325-331.

    11. [11]

      [11] Y. Sun, H.Y. Yuan, L.L. Hao, et al., Enrichment and antioxidant properties of flavone C-glycosides from trollflowers using macroporous resin, Food Chem. 141 (2013) 533-541.

    12. [12]

      [12] Y.L. Li, S.C. Ma, Y.T. Yang, S.M. Ye, P.P. But, Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge, J. Ethnopharmacol. 79 (2002) 365-368.

    13. [13]

      [13] X.A. Wu, Y.M. Zhao, N.J. Yu, Flavone C-glycosides from Trollius ledebouri reichb, J. Asian Nat. Prod. Res. 7 (2005) 1-4.

    14. [14]

      [14] C.N. Sun, M.M. Shen, L.L. Deng, J.Q. Mo, B.W. Zhou, Kinetics of ring-opening polymerization of octamethylcyclotetrasiloxane in microemulsion, Chin. Chem. Lett. 25 (2014) 621-626.

  • 加载中
    1. [1]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    2. [2]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    3. [3]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    4. [4]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    5. [5]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    6. [6]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    7. [7]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    8. [8]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    9. [9]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    10. [10]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    11. [11]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    12. [12]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    13. [13]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    14. [14]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    15. [15]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    16. [16]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    17. [17]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    18. [18]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    19. [19]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    20. [20]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

Metrics
  • PDF Downloads(0)
  • Abstract views(813)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return