Citation: Min Zhu, Yang Zhao. A convenient catalytic oxidative 1,2-shift of arylalkenes for preparation of a-aryl ketones mediated by NaI[J]. Chinese Chemical Letters, ;2015, 26(2): 248-250. doi: 10.1016/j.cclet.2014.11.006 shu

A convenient catalytic oxidative 1,2-shift of arylalkenes for preparation of a-aryl ketones mediated by NaI

  • Corresponding author: Min Zhu, 
  • Received Date: 9 September 2014
    Available Online: 24 October 2014

    Fund Project: Financial support from the National Natural Science Foundation of China (No. 21072176) is greatly appreciated. (No. 21072176)

  • Using a catalytic amount of NaI and a stoichiometric oxidant Oxone@, a convenient procedure has been developed for the catalytic oxidative 1,2-shift of arylalkenes in CH3CN/H2O at room temperature, which provides the corresponding a-aryl ketones in moderate to good yields. In this protocol, sodium iodide is first oxidized into hypoiodous acid, which reacts with arylalkene to afford iodohydrin. Then, the iodohydrin is transformed into the a-aryl ketone via an oxidative 1,2-shift rearrangement.
  • 加载中
    1. [1]

      [1] P.J. Stang, V.V. Zhdankin, Organic polyvalent iodine compounds, Chem. Rev. 96 (1996) 1123-1178.

    2. [2]

      [2] V.V. Zhdankin, P.J. Stang, Recent developments in the chemistry of polyvalent iodine compounds, Chem. Rev. 102 (2002) 2523-2584.

    3. [3]

      [3] K.C. Nicolaou, K. Sugita, P.S. Baran, et al., Iodine(V) reagents in organic synthesis. Part 1. Synthesis of polycyclic heterocycles via Dess Martin periodinane-mediated cascade cyclization: generality, scope, and mechanism of the reaction, J. Am. Chem. Soc. 124 (2002) 2212-2220.

    4. [4]

      [4] M. Ochiai, Nucleophilic vinylic substitutions of l3-vinyliodanes, J. Organomet. Chem. 611 (2000) 494-508.

    5. [5]

      [5] T. Okuyama, Solvolysis of vinyl iodonium salts. New insights into vinyl cation intermediates, Acc. Chem. Res. 35 (2002) 12-18.

    6. [6]

      [6] J. Barluenga, M. Maro-Arias, F. Gonzá lez-Bobes, et al., Reaction of alkenes with hydrogen peroxide and sodium iodide: a nonenzymatic biogenic-like approach to iodohydrins, Chem. Eur. J. 10 (2004) 1677-1682.

    7. [7]

      [7] K.C. Nicolaou, Y.L. Zhong, P.S. Baran, New synthetic technology for the rapid construction of novel heterocycles-Part 1: The reaction of Dess-Martin periodinane with anilides and related compounds, Angew. Chem. Int. Ed. 39 (2000) 622-625.

    8. [8]

      [8] T. Dohi, M. Ito, N. Yamaoka, et al., Hypervalent iodine(III): selective and efficient single-electron-transfer (SET) oxidizing agent, Tetrahedron 65 (2009) 10797-10815.

    9. [9]

      [9] M. Traore´, S. Ahmed-Ali, M. Peuchmaur, et al., Hypervalent iodine(III)-mediated tandem oxidative reactions: application for the synthesis of bioactive polyspirocyclohexa-2,5-dienones, Tetrahedron 66 (2010) 5863-5872.

    10. [10]

      [10] M. Arisawa, N.G. Ramesh, M. Nakaima, et al., Hypervalent iodine(III)-induced intramolecular cyclization of a-(aryl) alkyl-b-dicarbonyl compounds: a convenient synthesis of benzannulated and spirobenzannulated compounds, J. Org. Chem. 66 (2001) 59-65.

    11. [11]

      [11] G.F. Koser, L. Rebrovic, R.H. Wettach, Functionalization of alkenes and alkynes with [hydroxy(tosyloxy)iodo]benzene. Bis(tosyloxy)alkanes, vinylaryliodonium tosylates, and alkynylaryliodonium tosylates, J. Org. Chem. 46 (1981) 4324-4326.

    12. [12]

      [12] L. Rebrovic, G.F. Koser, Reactions of alkenes with [hydroxy(tosyloxy)iodo]benzene: stereospecific syn-1,2-ditosyloxylation of the carbon-carbon double bond and other processes, J. Org. Chem. 49 (1984) 2462-2472.

    13. [13]

      [13] M.W. Justik, G.F. Koser, Oxidative rearrangements of arylalkenes with [hydroxy( tosyloxy)iodo]benzene in 95% methanol: a general, regiospecific synthesis of a-aryl ketones, Tetrahedron Lett. 45 (2004) 6159-6163.

    14. [14]

      [14] T. Dohi, Y. Kita, Hypervalent iodine reagents as a new entrance to organocatalysts, Chem. Commun. (2009) 2073-2085.

    15. [15]

      [15] M. Ochiai, Y. Takeuchi, T. Katayama, et al., Iodobenzene-catalyzed a-acetoxylation of ketones. In situ generation of hypervalent (diacyloxyiodo)benzenes using m-chloroperbenzoic acid, J. Am. Chem. Soc. 127 (2005) 12244-12245.

    16. [16]

      [16] M. Uyanik, K. Ishihara, Hypervalent iodine-mediated oxidation of alcohols, Chem. Commun. (2009) 2086-2099.

    17. [17]

      [17] R.D. Richardson, T. Wirth, Hypervalent iodine goes catalytic, Angew. Chem. Int. Ed. 45 (2006) 4402-4404.

    18. [18]

      [18] T. Dohi, A. Maruyama, M. Yoshimura, Versatile hypervalent-iodine(III)-catalyzed oxidations withm-chloroperbenzoic acid as a cooxidant, Angew. Chem. Int. Ed. 44 (2005) 6193-6196.

    19. [19]

      [19] V.C. Purohit, S.P. Allwein, R.P. Bakale, Catalytic oxidative 1,2-shift in 1,10-disubstituted olefins using arene(iodo)sulfonic acid as the precatalyst and oxone as the oxidant, Org. Lett. 15 (2013) 1650-1653.

    20. [20]

      [20] A. Tanaka, K. Moriyama, H. Togo, Iodoarene-mediated a-tosyloxylation of ketones with MCPBA and p-toluenesulfonic acid, Synlett (2011) 1853-1858.

    21. [21]

      [21] M. Zhu, L. Li, H. Zhang, C.Q. Liu, Monobromination of aromatic compounds catalyzed by iodine or ammonium iodide, Chem. J. Chin. Univ. 33 (2012) 1995-1999.

    22. [22]

      [22] G. Asensio, C. Andreu, C. Boix-Bernardini, R. Mello, M.E. Gonzalez-Nunez, Iodomethane oxidation by dimethyldioxirane: a new route to hypoiodous acid and iodohydrines, Org. Lett. 1 (1999) 2125-2128.

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    3. [3]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    4. [4]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    5. [5]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    6. [6]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    7. [7]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    8. [8]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    9. [9]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    10. [10]

      Yingtao ZhongZiwen QiuYanmei LiJiaqi HuangZhenming LuRenjiang KongNi YanHong Cheng . Nutrients deprivation of biomimetic nanozymes for cascade catalysis triggered and oxidative damage induced tumor eradication. Chinese Chemical Letters, 2025, 36(3): 109846-. doi: 10.1016/j.cclet.2024.109846

    11. [11]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    12. [12]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    13. [13]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    14. [14]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    15. [15]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    16. [16]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    17. [17]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    18. [18]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    19. [19]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    20. [20]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

Metrics
  • PDF Downloads(0)
  • Abstract views(667)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return