Citation: Yong Sun, Cui-Lin Lu, Chang-Yuan Wang, Rui-Rui Wang, Ke-Xin Liu, Liu-Meng Yang, Yu-Hong Zhen, Hou-Li Zhang, Chao Wang, Yong-Tang Zheng, Xiao-Dong Ma. Identification of the novel N-phenylbenzenesulfonamide derivatives as potent HIV inhibitors[J]. Chinese Chemical Letters, ;2015, 26(2): 243-247. doi: 10.1016/j.cclet.2014.11.004 shu

Identification of the novel N-phenylbenzenesulfonamide derivatives as potent HIV inhibitors

  • Corresponding author: Yong-Tang Zheng,  Xiao-Dong Ma, 
  • Received Date: 2 September 2014
    Available Online: 23 October 2014

    Fund Project: This work was supported in part by grants from the National Natural Science Foundation of China (No. 81402788) (No. 81402788)

  • Searching for more safe and effective agents for HIV treatments is still an urgent topic worldwide. Based on our continuous modifications on the benzophenone derivatives as HIV-1 reverse transcriptase (RT) inhibitors, a new template bearing N-phenylbenzenesulfonamide (PBSA) structure was designed to enhance the interactions with HIV-1 RT. In this manuscript, a series of PBSA derivatives were synthesized and evaluated for their anti-HIV-1 activity. The preliminary test showed that these compounds were potent to inhibit wild-type HIV-1 with EC50 values ranging of 0.105-14.531 mmol/L. In particular, compound 13f not only has high anti-HIV-1 activity (0.108 mmol/L), but also possesses low toxicity with a TI value of 1816.6. Furthermore, the major interactions of the inhibitor 13f with HIV-1 RT were also investigated using the molecular modelling. Our discovered structure-activity relationships (SARs) of these analogues may serve as an important clue for further optimizations.
  • 加载中
    1. [1]

      [1] W. Schaefer, W.G. Friebe, H. Leinert, et al., Non-nucleoside inhibitors of HIV-1 reverse transcriptase: molecular modeling and X-ray structure investigations, J. Med. Chem. 36 (1993) 726-732.

    2. [2]

      [2] J.F. Palella, K.M. Delaney, A.C. Moorman, et al., Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators, N. Engl. J. Med. 338 (1998) 853-860.

    3. [3]

      [3] E. De Clerck, New developments in anti-HIV chemotherapy, Curr. Med. Chem. 8 (2001) 1543-1572.

    4. [4]

      [4] M.P. de Be´ thune, Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989-2009), Antivir. Res. 85 (2010) 75-90.

    5. [5]

      [5] R.A. Koup, V.J. Merluzzi, K.D. Hargrave, et al., Inhibition of human immunodeficiency virus type 1 (HIV-1) replication by the dipyridodiazepinone BI-RG-587, J. Infect. Dis. 163 (1991) 966-970.

    6. [6]

      [6] W.W. Freimuth, Delavirdine mesylate, a potent non-nucleoside HIV-1 reverse transcriptase inhibitor, Adv. Exp. Med. Biol. 394 (1996) 279-289.

    7. [7]

      [7] S.D. Young, S.F. Britcher, L.O. Tran, et al., L-743, 726 (DMP-266): a novel, highly potent nonnucleoside inhibitor of the human immunodeficiency virus type 1 reverse transcriptase, Antimicrob. Agents Chemother. 39 (1995) 2602-2605.

    8. [8]

      [8] L.B. Johnson, L.D. Saravolatz, Etravirine, a next-generation nonnucleoside reversetranscriptase inhibitor, Clin. Infect. Dis. 48 (2009) 1123-1128.

    9. [9]

      [9] S. Moreno, J. Ló pez Aldeguer, J.R. Arribas, et al., The future of antiretroviral therapy: challenges and needs, J. Antimicrob. Chemother. 65 (2010) 827-835.

    10. [10]

      [10] H. Azijn, I. Tirry, J. Vingerhoets, et al., TMC278, a next-generation nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and NNRTIresistant HIV-1, Antimicrob. Agents Chemother. 54 (2010) 718-727.

    11. [11]

      [11] Z. Zhang, R. Hamatake, Z. Hong, Clinical utility of current NNRTIs and perspectives of new agents in this class under development, Antivir. Chem. Chemother. 15 (2004) 121-134.

    12. [12]

      [12] Guidelines for the Use of Antiretro Iral Agents in HIV-1-Infected Adults and Adolescents. http://AIDSinfo.nih.gov (29.10.04).

    13. [13]

      [13] R.M. Grant, F.M. Hecht, M. Warmerdam, et al., Time trends in primary HIV-1 drug resistance among recently infected persons, JAMA 288 (2002) 181-188.

    14. [14]

      [14] J.H. Chan, G.A. Freeman, J.H. Tidwell, et al., Novel benzophenones as non-nucleoside reverse transcriptase inhibitors of HIV-1, J. Med. Chem. 47 (2004) 1175-1182.

    15. [15]

      [15] K.R. Romines, G.A. Freeman, L.T. Schaller, et al., Structure-activity relationship studies of novel benzophenones leading to the discovery of a potent, next generation HIV nonnucleoside reverse transcriptase inhibitor, J. Med. Chem. 49 (2006) 727-739.

    16. [16]

      [16] R.G. Ferris, R.J. Hazen, G.B. Roberts, et al., Antiviral activity of GW678248, a novel benzophenone nonnucleoside reverse transcriptase inhibitor, Antimicrob. Agents Chemother. 49 (2005) 4046-4051.

    17. [17]

      [17] P.G. Wyatt, R.C. Bethell, N. Cammack, et al., Benzophenone derivatives: a novel series of potent and selective inhibitors of human immunodeficiency virus type 1 reverse transcriptase, J. Med. Chem. 38 (1995) 1657-1665.

    18. [18]

      [18] X.D. Ma, Q.Q. He, X. Zhang, et al., Synthesis, structure-activity relationships, and docking studies of N-phenylarylformamide derivatives (PAFAs) as non-nucleoside HIV reverse transcriptase inhibitors, Eur. J. Med. Chem. 58 (2012) 504-512.

    19. [19]

      [19] X.D. Ma, X. Zhang, H.F. Dai, et al., Synthesis and biological activity of naphthylsubstituted (B-ring) benzophenone derivatives as novel non-nucleoside HIV-1 reverse transcriptase inhibitors, Bioorg. Med. Chem. 19 (2011) 4601-4607.

    20. [20]

      [20] X.D. Ma, X. Zhang, S.Q. Yang, et al., Synthesis and biological evaluation of (±)-benzhydrol derivatives as potent non-nucleoside HIV-1 reverse transcriptase inhibitors, Bioorg. Med. Chem. 19 (2011) 4704-4709.

    21. [21]

      [21] S.X. Gu, X. Zhang, Q.Q. He, et al., Synthesis and biological evaluation of naphthyl phenyl ethers (NPEs) as novel nonnucleoside HIV-1 reverse transcriptase inhibitors, Bioorg. Med. Chem. 19 (2011) 4220-4226.

    22. [22]

      [22] Y.T. Zheng, K.L. Ben, S.W. Jin, Anti-HIV-1 activity of trichobitacin, a novel ribosome-inactivating protein, Acta Pharmacol. Sin. 21 (2000) 179-182.

    23. [23]

      [23] D.S. Goodsell, G.M. Morris, A.J. Olson, Automated docking of flexible ligands: applications of AutoDock, J. Mol. Recognit. 9 (1996) 1-5.

  • 加载中
    1. [1]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    2. [2]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    3. [3]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    4. [4]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    5. [5]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    6. [6]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    7. [7]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    8. [8]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    9. [9]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    10. [10]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    11. [11]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    12. [12]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    13. [13]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    14. [14]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    15. [15]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    16. [16]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    17. [17]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    18. [18]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    19. [19]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    20. [20]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

Metrics
  • PDF Downloads(0)
  • Abstract views(648)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return