Citation:
Xu Yin, Cui-Rong Liu. Synthesis and properties of ionic conduction polymer for anodic bonding[J]. Chinese Chemical Letters,
;2015, 26(3): 289-292.
doi:
10.1016/j.cclet.2014.10.027
-
In this study, powders of polyethylene oxide (PEO) and lithiumperchlorate (LiClO4) were used as the raw materials for producing the ionic conduction polymer PEO-LiClO4 with different complex-ratios and used for anodic bonding through high energy ball milling method, and meanwhile, X-ray diffraction, differential scanning calorimetry (DSC), ultraviolet absorption spectrum test analysis, and other relevant methods were adopted to research the complexation mechanism of PEO and LiClO4 and the impact of the ionic conduction polymer with different complex-ratios on the anodic bonding process under the action of the strong static electric field. The research results showed that the crystallization of PEO could be effectively obstructed with increased addition of LiClO4, thus increasing the content of PEO-LiClO4 in amorphous area and continuously improving the complexation degree and the room-temperature conductivity thereof, and that the higher room-temperature conductivity enabled PEO-LiClO4 to better bond with metallic aluminum and have better bonding quality. As the new encapsulatingmaterial, such research results will promote the application of new polymer functional materials in micro-electromechanical system (MEMS) components.
-
Keywords:
- Packaging,
- Polyethylene oxide,
- Anodic bonding,
- Solid electrolyte
-
-
-
[1]
[1] R. Saha, N. Fritz, S.A. Bidstrup-Allen, P.A. Kohl, Packaging-compatible wafer level capping of MEMS devices, Microelectron. Eng. 104 (2013) 75-84.
-
[2]
[2] F.L. Zhu, Research on Some Basic Issues of MEMS Packaging Based on Process Mechanics, Huazhong University of Science & Technology, 2007.
-
[3]
[3] D.M. Zhang, Z.C. Ye, G.P. Ding, Developing trend of bonding technology for MEMS, Electron. Process Technol. 6 (2005) 315-318.
-
[4]
[4] A.C. Lapadatu, H. Jakobsen, Two-anodic bonding, in: V. Lindroos, M. Tilli (Eds.), Handbook of Silicon Based MEMS Materials and Technologies, 2010, pp. 513-520 (Chapter 30).
-
[5]
[5] N. Gao, Z.G. Chen, S.T. Wang, X.L. Sui, D.D. Gu, Research on PEI-PEO based solid state polymer electrolyte, J. Harbin Inst. Technol. 43 (2011) 654-659.
-
[6]
[6] S.T. Ren, H.F. Chang, T. Zheng, et al., HBPS-PEO multi-arm star polymer electrolytes and their ionic conductivity, Acta Polymer Sin. (2013) 1064-1071.
-
[7]
[7] D.H. Xiong, J.S. Cheng, H. Li, W. Deng, K. Ye, Anodic bonding of glass-ceramics to stainless steel coated with intermediate SiO2 layer, Microelectron. Eng. 87 (2010) 1741-1746.
-
[8]
[8] N. Voigt, L. van, Wüllen, The effect of plastic-crystalline succinonitrile on the electrolyte system PEO:LiBF4: insights from solid state NMR, Solid State Ionics 260 (2014) 65-75.
-
[1]
-
-
-
[1]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[2]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[3]
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
-
[4]
Kezhen Qi , Shu-yuan Liu , Ruchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460
-
[5]
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
-
[6]
Xingjie Li , Chengjun Yi , Weifei Hu , Huishan Zhang , Jiale Xia , Yuanyuan Li , Jinping Liu . Emerging sulfide-polymer composite solid electrolyte membranes. Chinese Chemical Letters, 2025, 36(6): 110215-. doi: 10.1016/j.cclet.2024.110215
-
[7]
Jing Guo . Stacking solid-state electrolyte and aluminum pellets for anode-free solid-state batteries. Chinese Chemical Letters, 2025, 36(5): 110764-. doi: 10.1016/j.cclet.2024.110764
-
[8]
Jun Luo , Yanya Liu , Jianghuaxiong Zhu , Chengxiong Wang , Yunkun Zhao , Dong Yan , Jian Li , Lichao Jia . A proton-conducting solid oxide fuel cell for co-production of ethylene and power via ethane conversion. Chinese Chemical Letters, 2025, 36(7): 110171-. doi: 10.1016/j.cclet.2024.110171
-
[9]
Ming Yang , Lin-Bo Liu , Shuo Liu , Yan Li , Biao Ouyang , Xian-Zhu Fu , Jing-Li Luo , Yifei Sun , Subiao Liu . Electrosynthesizing high-value fuels from CO2 in solid oxide electrolysis cells: Fundamentals, advances, and perspectives. Chinese Chemical Letters, 2025, 36(12): 110603-. doi: 10.1016/j.cclet.2024.110603
-
[10]
Mufan Cao , Long Pan , Yaping Wang , Xianwei Sui , Xiong Xiong Liu , Shengfa Feng , Pengcheng Yuan , Min Gao , Jiacheng Liu , Song-Zhu Kure-Chu , Takehiko Hihara , Yang Zhou , Zheng-Ming Sun . Mechanical-durable and humidity-resistant dry-processed halide solid-state electrolyte films for all-solid-state battery. Chinese Chemical Letters, 2025, 36(6): 110391-. doi: 10.1016/j.cclet.2024.110391
-
[11]
Zhangran Ye , Zhixuan Yu , Jingming Yao , Lei Deng , Yunna Guo , Hantao Cui , Chongchong Ma , Chao Tai , Liqiang Zhang , Lingyun Zhu , Peng Jia . An ionically conductive and compressible sulfochloride solid-state electrolyte for stable all-solid-state lithium-based batteries. Chinese Chemical Letters, 2025, 36(8): 110272-. doi: 10.1016/j.cclet.2024.110272
-
[12]
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
-
[13]
Hongbin Liu , Putao Zhang . Effective approach to stabilize silicon anode: Controllable molecular construction of artificial solid electrolyte interphase. Chinese Journal of Structural Chemistry, 2025, 44(3): 100444-100444. doi: 10.1016/j.cjsc.2024.100444
-
[14]
Jingyu Shi , Xiaofeng Wu , Yutong Chen , Yi Zhang , Xiangyan Hou , Ruike Lv , Junwei Liu , Mengpei Jiang , Keke Huang , Shouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938
-
[15]
Yao Wang , Jun Ouyang , Huadong Yuan , Jianmin Luo , Shihui Zou , Jianwei Nai , Xinyong Tao , Yujing Liu . Impact of local amorphous environment on the diffusion of sodium ions at the solid electrolyte interface in sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110412-. doi: 10.1016/j.cclet.2024.110412
-
[16]
Xiaoxi Zhao , Qingyun Dou , Pei Tang , Bingjun Yang , Qunji Xue , Xingbin Yan . In-situ construction of solid electrolyte interphase for stable zinc anode via synergy of electrochemical reduction and chemical precipitation. Chinese Chemical Letters, 2025, 36(11): 110422-. doi: 10.1016/j.cclet.2024.110422
-
[17]
Xueqi Du , Ge Gao , Guoxiang Pan , Zhong Qiu , Yongqi Zhang , Shenghui Shen , Tianqi Yang , Xinqi Liang , Ping Liu , Xinhui Xia . Utilizing BBr3 plasma to create high-quality solid electrolyte interphases for enhanced lithium metal anodes. Chinese Chemical Letters, 2025, 36(11): 110753-. doi: 10.1016/j.cclet.2024.110753
-
[18]
Han Yan , Jingming Yao , Zhangran Ye , Qiaoquan Lin , Ziqi Zhang , Shulin Li , Dawei Song , Zhenyu Wang , Chuang Yu , Long Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568
-
[19]
Sheng Zhao , Junjie Lu , Bifu Sheng , Siying Zhang , Hao Li , Jizhang Chen , Xiang Han . High-performance room temperature solid-state lithium battery enabled by PP-PVDF multilayer composite electrolyte. Chinese Chemical Letters, 2025, 36(6): 110008-. doi: 10.1016/j.cclet.2024.110008
-
[20]
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1074)
- HTML views(41)
Login In
DownLoad: