Citation: Peng Li, Sridhar Regati, Hui-Cai Huang, Hadi D. Arman, Bang-Lin Chen, John C.-G. Zhao. A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions[J]. Chinese Chemical Letters, ;2015, 26(1): 6-10. doi: 10.1016/j.cclet.2014.10.022 shu

A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions

  • Corresponding author: Bang-Lin Chen,  John C.-G. Zhao, 
  • Received Date: 17 September 2014
    Available Online: 15 October 2014

    Fund Project:

  • A new highly efficient and reusable Cu(I)-MOF has been developed for the synthesis of propargylamine compounds via the three-component reaction of secondary amines, alkynes, and aromatic aldehydes under solvent-free conditions. The desired propargylamines were obtained in good to excellent yields with a low catalyst loading. The catalyst may be recovered and reused for up to 5 cycles without major loss of activity. This protocol has the advantages of excellent yields, low catalyst loading, and catalyst recyclability.
  • 加载中
    1. [1]

      [1] O. Bar-Am, T. Amit, O. Weinreb, M.B. Youdim, S. Mandel, Propargylamine containing compounds as modulators of proteolytic cleavage of amyloid-beta protein precursor: involvement of MAPK and PKC activation, J. Alzheimers Dis. 21 (2010) 361-371.

    2. [2]

      [2] I. Bolea, A. Gella, M. Unzeta, Propargylamine-derived multitarget-directed ligands: fighting Alzheimer's disease with monoamine oxidase inhibitors, J. Neural Transm. 120 (2013) 893-902.

    3. [3]

      [3] J.J. Chen, D.M. Swope, Clinical pharmacology of rasagiline: a novel, secondgeneration propargylamine for the treatment of Parkinson disease, J. Clin. Pharm. 45 (2005) 878-894.

    4. [4]

      [4] V.K.Y. Lo, Y.G. Liu, M.K. Wong, C.M. Che, Gold(Ⅲ) salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction, Org. Lett. 8 (2006) 1529-1532.

    5. [5]

      [5] I. Matsuda, J. Sakakibara, H. Nagashima, A novel-approach to alpha-silylmethylene- beta-lactams via Rh-catalyzed silylcarbonylation of propargylamine derivatives, Tetrahedron Lett. 32 (1991) 7431-7434.

    6. [6]

      [6] C.P. Sar, T. Kalai, J. Jeko, K. Hideg, Synthesis of deprenyl-like nitroxide free radicals and their diamagnetic derivatives, Arkivoc (2012) 47-59.

    7. [7]

      [7] S. Okamoto, Synthesis of enantio-enriched axially chiral allenyltitaniums and their reaction with electrophiles, J. Synth. Org. Chem. Jpn. 59 (2001) 1204-1211.

    8. [8]

      [8] M.J. Albaladejo, F. Alonso, Y. Moglie, M. Yus, Three-component coupling of aldehydes, amines, and alkynes catalyzed by oxidized copper nanoparticles on titania, Eur. J. Org. Chem. (2012) 3093-3104.

    9. [9]

      [9] F. Alonso, M. Yus, Heterogeneous catalytic homocoupling ofterminal alkynes, ACS Catal. 2 (2012) 1441-1451.

    10. [10]

      [10] J. Dulle, K. Thirunavukkarasu, M.C. Mittelmeijer-Hazeleger, et al., Efficient threecomponent coupling catalysed by mesoporous copper-aluminum based nanocomposites, Green Chem. 15 (2013) 1238-1243.

    11. [11]

      [11] B.J. Borah, S.J. Borah, L. Saikia, D.K. Dutta, Efficient three-component coupling reactions catalyzed by Cu-0-nanoparticles stabilized on modified montmorillonite, Catal. Sci. Technol. 4 (2014) 1047-1054.

    12. [12]

      [12] Q.L. Zhu, Q. Xu, Metal-organic framework composites, Chem. Soc. Rev. 43 (2014) 5468-5512.

    13. [13]

      [13] G.H. Mahdavinia, H. Sepehrian, MCM-41 anchored sulfonic acid (MCM-41-RSO3H): a mild, reusable and highly efficient heterogeneous catalyst for the Biginelli reaction, Chin. Chem. Lett. 19 (2008) 1435-1439.

    14. [14]

      [14] J. Lee, O.K. Farha, J. Roberts, et al., Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38 (2009) 1450-1459.

    15. [15]

      [15] A. Dhakshinamoorthy, H. Garcia, Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles, Chem. Soc. Rev. 43 (2014) 5750-5765.

    16. [16]

      [16] K. Jayaramulu, K.K.R. Datta, M.V. Suresh, et al., Honeycomb porous framework of zinc(Ⅱ): effective host for palladium nanoparticles for efficient three-component (A3) coupling and selective gas storage, ChemPlusChem 77 (2012) 743-747.

    17. [17]

      [17] I. Luz, F.X. Llabrés i Xamena, A. Corma, Bridging homogeneous and heterogeneous catalysis with MOFs: Cu(I)-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines, J. Catal. 285 (2012) 285-291.

    18. [18]

      [18] J. Yang, P. Li, L. Wang, Postsynthetic modification of metal-organic framework as a highly efficient and recyclable catalyst for three-component (aldehyde-alkyneamine) coupling reaction, Catal. Commun. 27 (2012) 58-62.

    19. [19]

      [19] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York, 1998p. 30.

    20. [20]

      [20] A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Catalysis by metal-organic frameworks in water, Chem. Commun. 50 (2014) 12800-12814.

    21. [21]

      [21] A. Dhakshinamoorthy,M. Opanasenko, J. Cejka, Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups, Adv. Synth. Catal. 355 (2013) 247-268.

    22. [22]

      [22] A. Dhakshinamoorthy, M. Alvaro, H. Chevreau, et al., Iron(Ⅲ) metal-organic frameworks as solid Lewis acids for the isomerization of a-pinene oxide, Catal. Sci. Technol. 2 (2012) 324-330.

    23. [23]

      [23] K. Liang, H.G. Zheng, Y.L. Song, et al., Self-assembly of interpenetrating coordination nets formed from interpenetrating cationic and anionic three-dimensional diamondoid cluster coordination polymers, Angew. Chem. Int. Ed. 43 (2004) 5900-5903.

    24. [24]

      [24] H.H. Fei, D.L. Rogow, S.R.J. Oliver, Reversible anion exchange and catalytic properties of two cationic metal-organic frameworks based on Cu(I) and Ag(I), J. Am. Chem. Soc. 132 (2010) 7202-7209.

    25. [25]

      [25] M.C. Das, Q. Guo, Y. He, et al., Interplay of metalloligand and organic ligand to tune micropores within Isostructural mixed-metal organic frameworks (M'MOFs) for their highly selective separation of chiral and achiral small molecules, J. Am. Chem. Soc. 134 (2012) 8703-8710.

    26. [26]

      [26] S. Regati, Y.B. He, M. Thimmaiah, et al., Enantioselective ring-opening of mesoepoxides by aromatic amines catalyzed by a homochiral metal-organic framework, Chem. Commun. 49 (2013) 9836-9838.

    27. [27]

      [27] P. Li, S. Regati, R.J. Butcher, et al., Hydrogen-bonding 2D metal-organic solids as highly robust and efficient heterogeneous green catalysts for Biginelli reaction, Tetrahedron Lett. 52 (2011) 6220-6222.

    28. [28]

      [28] M. Thimmaiah, P. Li, S. Regati, B. Chen, J.C.G. Zhao, Multi-component synthesis of 2-amino-6-(alkylthio)pyridine-3, 5-dicarbonitriles using Zn(Ⅱ) and Cd(Ⅱ) metalorganic frameworks (MOFs) under solvent-free conditions, Tetrahedron Lett. 53 (2012) 4870-4872.

    29. [29]

      [29] X.W. Wang, H. Guo, M.J. Liu, X.Y. Wang, D.S. Deng, 2D Naphthalene disulfonate- cadmiun coordination polymer with 2,4,5-tri(4-pyridyl)-imidazole as a co-ligand: structure and catalytic property, Chin. Chem. Lett. 25 (2014) 243-246.

    30. [30]

      [30] M.K. Patil, M. Keller, B.M. Reddy, P. Pale, J. Sommer, Copper zeolites as green catalysts for multicomponent reactions of aldehydes, terminal alkynes and amines: an efficient and green synthesis of propargylamines, Eur. J. Org. Chem. (2008) 4440-4445.

    31. [31]

      [31] M. Jeganathan, A. Dhakshinamoorthy, K. Pitchumani, One-pot synthesis of propargylamines using Ag(I)-exchanged K10 montmorillonite clay as reusable catalyst in water, ACS Sustain. Chem. Eng. 2 (2014) 781-787.

  • 加载中
    1. [1]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    2. [2]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    3. [3]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    4. [4]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    5. [5]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    6. [6]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    7. [7]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    8. [8]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    9. [9]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    10. [10]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    11. [11]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    12. [12]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    13. [13]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    14. [14]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    15. [15]

      Lei ZhuHai-Ruo LiYi-Ning MaoRuiying LiuBo ZhangJing ChenWengui XuLibo ZhangCheng-Peng Li . A four-fold interpenetrated MOF for efficient perrhenate/pertechnetate removal from alkaline nuclear effluents. Chinese Chemical Letters, 2024, 35(12): 109921-. doi: 10.1016/j.cclet.2024.109921

    16. [16]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    17. [17]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    18. [18]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    19. [19]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    20. [20]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

Metrics
  • PDF Downloads(0)
  • Abstract views(784)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return