Citation: Anna Pratima G. Nikalje, Mangesh S. Ghodke, Firoz A. Kalam Khan, Jaiprakash N. Sangshetti. CAN catalyzed one-pot synthesis and docking study of some novel substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents[J]. Chinese Chemical Letters, ;2015, 26(1): 108-112. doi: 10.1016/j.cclet.2014.10.020 shu

CAN catalyzed one-pot synthesis and docking study of some novel substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents

  • Corresponding author: Anna Pratima G. Nikalje, 
  • Received Date: 22 May 2014
    Available Online: 10 October 2014

  • The present work describes a facile, one-pot three component synthesis of a series of 3-[(4,5-diphenyl-2-substituted aryl/heteryl)-1H-imidazol-1-yl]-1H-1,2,4-triazole-5-carboxylic acid derivatives M(1-15). Benzil, aromatic aldehydes and 3-amino-1,2,4-triazole-5-carboxylic acid was refluxed in ethanol using cerric ammonium nitrate (CAN) as a catalyst to give the title compounds in good yields. The compounds were evaluated for their in vitro antifungal and antibacterial activity. Compounds M1, M9, and M15 were found to be equipotent against Candida albicans when compared with fluconazole. Compounds M2, M5, and M14 showed higher activity against Streptococcus pneumoniae, Escherichia coli and Streptococcus pyogenes, respectively, compared with ampicillin. Docking study of the newly synthesized compounds was performed, and the results showed good bindingmode in the active sites of C. albicans enzyme cytochrome P450 lanosterol 14α-demethylase. The results of in vitro antifungal activity and docking study showed that synthesized compounds had potential antifungal activity and can be further optimized and developed as a lead compound.
  • 加载中
    1. [1]

      [1] A.A. Marzouk, V.M. Abbasov, A.H. Talybov, Synthesis of 2,4,5-triphenyl imidazole derivatives using diethyl ammonium hydrogen phosphate as green, fast and reusable catalyst, World J. Org. Chem. 1 (2013) 6-10.

    2. [2]

      [2] P.P. Reddy, K. Mukkanti, K. Purandhar, ALPO4 mediated one-pot, four-component synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles under conventional heating and microwave irradiation, Rasayan J. Chem. 3 (2010) 335-340.

    3. [3]

      [3] P.J. Das, J. Das, M. Ghosh, Solvent free one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles catalyzed by secondary amine based ionic liquid and defective keggin heteropoly acid, Green Sustain. Chem. 3 (2013) 6-13.

    4. [4]

      [4] J.H. Block, J.M. Beale (Eds.), Wilson and Griswold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 11th ed., Lippincott's Williams & Wilkins Publication, 2004, p. 240.

    5. [5]

      [5] Y. Ozkay, I. Iskdag, Z. Incesu, G. Akalın, Synthesis of 2-substituted-N-[4-(1-methyl- 4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity, Eur. J. Med. Chem. 45 (2010) 3320-3328.

    6. [6]

      [6] M.R. Wiley, L.C. Weir, S.L. Briggs, N.Y. Chirgadze, D. Clawson, The design of potent, selective, non-covalent, peptide thrombin inhibitors utilizing imidazole as a S1 binding element, Bioorg. Med. Chem. Lett. 9 (1999) 2767-2772.

    7. [7]

      [7] A. Puratchikodya, M. Doble, Antinociceptive and antiinflammatory activities and QSAR studies on 2-substituted-4,5-diphenyl-1H-imidazoles, Bioorg. Med. Chem. 15 (2007) 1083-1090.

    8. [8]

      [8] K.C.S. Achar, K.M. Hosamani, H.R. Seetharamareddy, In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives, Eur. J. Med. Chem. 45 (2010) 2048-2054.

    9. [9]

      [9] R.V. Shingalapur, K.M. Hosamani, R.S. Keri, Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles, Eur. J. Med. Chem. 44 (2009) 4244-4248.

    10. [10]

      [10] D. Sharma, B. Narasimhan, P. Kumar, et al., Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives, Eur. J. Med. Chem. 44 (2009) 2347-2353.

    11. [11]

      [11] D. Zampieri, M.G. Mamolo, L. Vio, et al., Synthesis, antifungal and antimycobacterial activities of new bis-imidazole derivatives, and prediction of their binding to P45014DM by molecular docking and MM/PBSA method, Bioorg. Med. Chem. 15 (2007) 7444-7458.

    12. [12]

      [12] D. Olender, J. Zwawiak, V. Lukianchuk, et al., Synthesis of some N-substituted nitroimidazole derivatives as potential antioxidant and antifungal agents, Eur. J. Med. Chem. 44 (2009) 645-652.

    13. [13]

      [13] M. Tonelli, M. Simone, B. Tasso, F. Novelli, V. Boido, Antiviral activity of benzimidazole derivatives. II. Antiviral activity of 2-phenylbenzimidazole derivatives, Bioorg. Med. Chem. 18 (2010) 2937-2953.

    14. [14]

      [14] P. Gupta, S. Hameed, R. Jain, Ring-substituted imidazoles as a new class of antituberculosis agents, Eur. J. Med. Chem. 39 (2004) 805-814.

    15. [15]

      [15] J. Pandey, T.K. Vinod, S.S. Verma, et al., Synthesis and antitubercular screening of imidazole derivatives, Eur. J. Med. Chem. 44 (2009) 3350-3355.

    16. [16]

      [16] G. Nurhan, S. Mevlut, C. Elif, S. Ali, D. Neslihan, Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives, Turk. J. Chem. 31 (2007) 335-348.

    17. [17]

      [17] S.F. Barbuceanu, L.A. Gabriela, S. Ioana, D. Constanatin, S. Radu, New S-alkylated 1,2,4-triazoles incorporating diphenyl sulfone moieties with potential antibacterial activity, J. Serb. Chem. Soc. 74 (2009) 1041-1049.

    18. [18]

      [18] M.R. Banday, A. Rauf, Substituted 1,2,4-triazoles and thiazolidinones from fatty acids spectral characterization and antimicrobial activity, Indian J. Chem. 48 (2009) 97-102.

    19. [19]

      [19] J.N. Sangshetti, D.B. Shinde, A.P. Sarkate, Synthesis, antifungal activity and docking study of some new 1,2,4-triazole analogs, Chem. Biol. Drug Des. 78 (2011) 800-809.

    20. [20]

      [20] R. Tang, L. Jin, C. Mou, et al., Synthesis, antifungal and antibacterial activity for novel amide derivatives containing a triazole moiety, Chem. Cent. J. (2013) 7-30.

    21. [21]

      [21] X. Chai, J. Zhang, Y. Cao, et al., Design, synthesis and molecular docking studies of novel triazole as antifungal agent, Eur. J. Med. Chem. 46 (2011) 3167-3176.

    22. [22]

      [22] Y. Jiang, J. Zhang, Y. Cao, et al., Synthesis, in vitro evaluation and molecular docking studies of new triazole derivatives as antifungal agents, Bioorg. Med. Chem. Lett. 21 (2011) 4471-4475.

    23. [23]

      [23] K.S. Bhat, Synthesis and antitumor activity studies of some new fused 1,2,4- triazole derivatives carrying 2,4-dichloro-5-fluorophenyl moiety, Eur. J. Med. Chem. 44 (2009) 5066-5070.

    24. [24]

      [24] Y.A. Al-Soud, M.N. Al-Dweri, N.A. Al-Masoudi, Synthesis, antitumor and antiviral properties of some 1,2,4-triazole derivatives, Farmaco 59 (2004) 775-783.

    25. [25]

      [25] P. Valentina, K. Ilango, M. Deepthi, et al., Antioxidant activity of some substituted 1, 2, 4-triazo-5-thione Schiff base, J. Pharm. Sci. Res. 2 (2009) 74-77.

    26. [26]

      [26] H. Yuksek, S. Kalayli, M.M.O. Mucuk, Synthesis and antioxidant activities of some 4-benzylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives, Ind. J. Chem. 45 (2006) 715-718.

    27. [27]

      [27] (a) A. Ning, Z. Wang, X. Xu, X. Li, One-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles by a tandem three-component reaction of hydroxyl amines, aldehydes and 2-azido acrylates, ARKIVOC VI (2012) 222-228;

    28. [28]

      (b) J.N. Sangshetti, N.D. Kokare, S.D. Kotharkar, D.B. Shinde, ZrOCl2·8H2O catalyzed one-pot synthesis of 2,4,5-triaryl-1H-imidazoles and substituted 1,4- di(4,5-diphenylimidazol-yl)benzene, Chin. Chem. Lett. 19 (2008) 762-768.

    29. [29]

      [28] R.K. Sharma, An efficient and one pot synthesis of poly substituted imidazoles catalyzed by BiCl3, Indian J. Chem. 51B (2012) 1489-1493.

    30. [30]

      [29] A. Saberi, Synthesis of novel highly potent antibacterial and antifungal agents, Asian J. Med. Pharm. Res. 1 (2012) 01-05.

    31. [31]

      [30] (a) J.N. Sangshetti, N.D. Kokare, S.A. Kotharkar, D.B. Shinde, Ceric ammonium nitrate catalysed three component one-pot efficient synthesis of 2,4,5-triaryl-1Himidazoles, J. Chem. Sci. 120 (2008) 463-467;

    32. [32]

      (b) K.F. Shelke, S.B. Sapkal, M.S. Shingare, Ultrasound-assisted one-pot synthesis of 2,4,5-triarylimidazole derivatives catalyzed by ceric (IV) ammonium nitrate in aqueous media, Chin. Chem. Lett. 20 (2009) 283-287.

    33. [33]

      [31] D. Greenwood, R.C.B. Slack, J.F. Peutherer, Medical Microbiology, 14th ed., ELBS, London, 1992.

    34. [34]

      [32] J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, et al., Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl)methyl)-4,5,6,7-tetrahydrothieno[ 3,2-c]pyridine as antifungal agents, Chin. Chem. Lett. 25 (2014) 1033-1038.

    35. [35]

      [33] N. Strushkevich, S.A. Usanov, H.W. Park, Structural basis of human CYP51 inhibition by antifungal azoles, J. Mol. Biol. 397 (2010) 1067-1078.

    36. [36]

      [34] R.W. Hooft, G. Vriend, C. Sander, E.E. Abola, Errors in protein structures, Nature 381 (1996) 272.

    37. [37]

      [35] VLife Molecular Design Suite 4.3, VLife Sciences Technologies Pvt. Ltd; www. Vlifesciences.com.

  • 加载中
    1. [1]

      Yun-Feng LiuHui-Fang DuYa-Hui ZhangZhi-Qin LiuXiao-Qian QiDu-Qiang LuoFei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858

    2. [2]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    3. [3]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    4. [4]

      Yanye FanJingjing ChenBichun ChenJinyu BaiBowen YangFeng LiangLijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075

    5. [5]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    6. [6]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    7. [7]

      Fuyun ChiMan ZhangYiman HanFukui ShenShijie PengBo SuYuanyuan HouGang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913

    8. [8]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    9. [9]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    10. [10]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    11. [11]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    12. [12]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    13. [13]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    14. [14]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    15. [15]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    16. [16]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    17. [17]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    18. [18]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    19. [19]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    20. [20]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

Metrics
  • PDF Downloads(0)
  • Abstract views(712)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return