Citation: Ze-Shen Gao, Sheng Sun, Wei Li, Qing Ma, Qing Li, Zhong-Jun Li. An efficient ionic liquid supported divergent assembly of 3,6-branched glucosamine-containing pentasaccharide[J]. Chinese Chemical Letters, ;2014, 25(12): 1525-1530. doi: 10.1016/j.cclet.2014.09.016 shu

An efficient ionic liquid supported divergent assembly of 3,6-branched glucosamine-containing pentasaccharide

  • Corresponding author: Qing Li,  Zhong-Jun Li, 
  • Received Date: 11 June 2014
    Available Online: 1 September 2014

    Fund Project: This research was supported by the National Basic Research Program of China (973 Program, No. 2012CB822100) (973 Program, No. 2012CB822100) the National Key Technology R&D Program “New Drug Innovation” of China (No. 2012ZX09502001-001) (No. 2012ZX09502001-001)the National Natural Science Foundation of China (Nos. 91213301, 21232002). (Nos. 91213301, 21232002)

  • We utilized the glycosyl acceptor tagging method with ionic liquid support for synthesis of the core segment of Clostridium botulinum C2 toxin ligand through a divergent synthetic strategy without chromatographic purification. The total yield was 57.1% and the reaction was completed in 10 h. The efficient ionic liquid supported glycosylation and purification procedure was applied for the synthesis of branched glucosamine-containing oligosaccharides for the first time, which expanded the scope of ionic liquid supported synthesis of biologically important oligosaccharides.
  • 加载中
    1. [1]

      [1] N. Maddodi, A. Jayanthy, V. Setaluri, Shining light on skin pigmentation: the darker and the brighter side of effects of UV radiation, Photochem. Photobiol. 88 (2012) 1075-1082.

    2. [2]

      [2] J.M. Gillbro, M.J. Olsson, The melanogenesis and mechanisms of skin-lightening agents-existing and new approaches, Int. J. Cosmet. Sci. 33 (2011) 210-221.

    3. [3]

      [3] C.H. Wong, S.C. Zimmerman, Orthogonality in organic, polymer, and supermolecular chemistry: from Merrifield to click chemistry, Chem. Commun. 49 (2013) 1679-1695.

    4. [4]

      [4] T. Zhu, G.J. Boons, A two-directional approach for the solid-phase synthesis of trisaccharide libraries, Angew. Chem. Int. Ed. 37 (1998) 1898-1900.

    5. [5]

      [5] O.J. Plante, E.R. Palmacci, R.B. Andrade, P.H. Seeberger, Oligosaccharide synthesis with glycosyl phosphate and dithiophosphate triesters as glycosylating agents, J. Am. Chem. Soc. 123 (2001) 9545-9554.

    6. [6]

      [6] B. Yang, Y.Q. Jing, X.F. Huang, Fluorous-assisted one-pot oligosaccharide synthesis, Eur. J. Org. Chem. 2010 (2010) 1290-1298.

    7. [7]

      [7] C.L. Zong, A. Venot, O. Dhamale, G.J. Boons, Fluorous supported modular synthesis of heparan sulfate oligosaccharides, Org. Lett. 15 (2013) 342-345.

    8. [8]

      [8] J. Bauer, J. Rademann, Hydrophobically assisted switching phase synthesis: the flexible combination of solid-phase and solution-phase reactions employed for oligosaccharide preparation, J. Am. Chem. Soc. 127 (2005) 7296-7297.

    9. [9]

      [9] J. Bauer, K. Brandenburg, U. Zaehringer, J. Rademann, Chemical synthesis of a glycolipid library by a solid-phase strategy allows elucidation of the structural specificity of immunostimulation by rhamnolipids, Chem. Eur. J. 12 (2006) 7116- 7124.

    10. [10]

      [10] S. Kim, A. Tsuruyama, A. Ohmori, K. Chiba, Solution-phase oligosaccharide synthesis in a cycloalkane-based thermomorphic system, Chem. Commun. 15 (2008) 1816-1818.

    11. [11]

      [11] A.A. Rosatella, R.F.M. Frade, C.A.M. Afonso, Dissolution and transformation of carbohydrates in ionic liquids, Curr. Org. Synth. 8 (2011) 840-860.

    12. [12]

      [12] W.S. Miao, T.H. Chan, Ionic-liquid-supported synthesis: a novel liquid-phase strategy for organic synthesis, Acc. Chem. Res. 39 (2006) 897-908.

    13. [13]

      [13] O.A. El Seoud, A. Koschella, L.C. Fidale, S. Dorn, T. Heinze, Applications of ionic liquids in carbohydrate chemistry: a window of opportunities, Biomacromolecules 8 (2007) 2629-2647.

    14. [14]

      [14] X. He, T.H. Chan, Ionic-tag-assisted oligosaccharide synthesis, Synthesis 2006 (2006) 1645-1651.

    15. [15]

      [15] J.Y. Huang, M. Lei, Y.G. Wang, A novel and efficient ionic liquid supported synthesis of oligosaccharides, Tetrahedron Lett. 47 (2006) 3047-3050.

    16. [16]

      [16] A.K. Pathak, C.K. Yerneni, Z. Young, V. Pathak, Oligomannan synthesis using ionic liquid supported glycosylation, Org. Lett. 10 (2008) 145-148.

    17. [17]

      [17] C.K. Yerneni, V. Pathak, A.K. Pathak, Imidazolium cation supported solution-phase assembly of homolinear α-(1→6)-linked octamannoside: an efficient alternate approach for oligosaccharide synthesis, J. Org. Chem. 74 (2009) 6307-6310.

    18. [18]

      [18] M. Pé pin, M. Hubert-Roux, C. Martin, et al., First example of α-(1→4)-glycosylation reactions on ionic liquid supports, Eur. J. Org. Chem. 2010 (2010) 6366-6371.

    19. [19]

      [19] J.Y. Huang, A. Li, J.R. Li, An efficient approach for the synthesis of oligosaccharides using ionic liquid supported glycosylation, Carbohydr. Polym. 83 (2011) 297-302.

    20. [20]

      [20] A.T. Tran, R. Burden, D.T. Racys, M.C. Galan, Ionic catch and release oligosaccharide synthesis (ICROS), Chem. Commun. 47 (2011) 4526-4528.

    21. [21]

      [21] I. Sittel, A.T. Tran, D. Benito-Alifonso, M.C. Galan, Combinatorial ionic catch-andrelease oligosaccharide synthesis (combi-ICROS), Chem. Commun. 49 (2013) 4217-4219.

    22. [22]

      [22] Q. Ma, S. Sun, X.B. Meng, et al., Assembly of homolinear a-(1→2)-linked nonamannoside on ionic liquid support, J. Org. Chem. 76 (2011) 5652-5660.

    23. [23]

      [23] C.G. Li, Z.X. Zhang, Q. Duan, X.B. Li, Glycopeptide synthesis on an ionic liquid support, Org. Lett. 16 (2014) 3008-3011.

    24. [24]

      [24] S. Hanashima, S. Manabe, Y. Ito, Divergent synthesis of sialylated glycan chains: combined use of polymer support, resin capture-release, and chemo-enzymatic strategies, Angew. Chem. Int. Ed. 44 (2005) 4218-4224.

    25. [25]

      [25] B.C. Jansen, Toxic antigenic factors produced by Clostridium botulinum types C and D, Onderstepoort J. Vet. Res. 38 (1971) 93-98.

    26. [26]

      [26] P. Bojarová , R.R. Rosencrantz, L. Elling, V. Křen, Enzymatic glycosylation of multivalent scaffolds, Chem. Soc. Rev. 42 (2013) 4774-4797.

    27. [27]

      [27] C. Schleberger, H. Hochmann, H. Barth, K. Aktories, G.E. Schulz, Structure and action of the binary C2 toxin from Clostridium botulinum, J. Mol. Biol. 364 (2006) 705-715.

    28. [28]

      [28] H. Imagawa, A. Kinoshita, H. Yamamoto, K. Namba, M. Nishizawa, Efficient glycosylation using ODS adsorption method based on the affinity of long alkoxybenzyl glycoside, Synlett 13 (2008) 1981-1984.

  • 加载中
    1. [1]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    2. [2]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    3. [3]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    4. [4]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    5. [5]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    6. [6]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    7. [7]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    8. [8]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    9. [9]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    10. [10]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    11. [11]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    12. [12]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    13. [13]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    14. [14]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    15. [15]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    16. [16]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    17. [17]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    18. [18]

      Fengkai ZouBorui SuHan LengNini XinShichao JiangDan WeiMei YangYouhua WangHongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523

    19. [19]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    20. [20]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

Metrics
  • PDF Downloads(0)
  • Abstract views(626)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return