Citation:
Ze-Shen Gao, Sheng Sun, Wei Li, Qing Ma, Qing Li, Zhong-Jun Li. An efficient ionic liquid supported divergent assembly of 3,6-branched glucosamine-containing pentasaccharide[J]. Chinese Chemical Letters,
;2014, 25(12): 1525-1530.
doi:
10.1016/j.cclet.2014.09.016
-
We utilized the glycosyl acceptor tagging method with ionic liquid support for synthesis of the core segment of Clostridium botulinum C2 toxin ligand through a divergent synthetic strategy without chromatographic purification. The total yield was 57.1% and the reaction was completed in 10 h. The efficient ionic liquid supported glycosylation and purification procedure was applied for the synthesis of branched glucosamine-containing oligosaccharides for the first time, which expanded the scope of ionic liquid supported synthesis of biologically important oligosaccharides.
-
Keywords:
- Ionic liquid,
- Oligosaccharide,
- Rapid assembling
-
-
-
[1]
[1] N. Maddodi, A. Jayanthy, V. Setaluri, Shining light on skin pigmentation: the darker and the brighter side of effects of UV radiation, Photochem. Photobiol. 88 (2012) 1075-1082.
-
[2]
[2] J.M. Gillbro, M.J. Olsson, The melanogenesis and mechanisms of skin-lightening agents-existing and new approaches, Int. J. Cosmet. Sci. 33 (2011) 210-221.
-
[3]
[3] C.H. Wong, S.C. Zimmerman, Orthogonality in organic, polymer, and supermolecular chemistry: from Merrifield to click chemistry, Chem. Commun. 49 (2013) 1679-1695.
-
[4]
[4] T. Zhu, G.J. Boons, A two-directional approach for the solid-phase synthesis of trisaccharide libraries, Angew. Chem. Int. Ed. 37 (1998) 1898-1900.
-
[5]
[5] O.J. Plante, E.R. Palmacci, R.B. Andrade, P.H. Seeberger, Oligosaccharide synthesis with glycosyl phosphate and dithiophosphate triesters as glycosylating agents, J. Am. Chem. Soc. 123 (2001) 9545-9554.
-
[6]
[6] B. Yang, Y.Q. Jing, X.F. Huang, Fluorous-assisted one-pot oligosaccharide synthesis, Eur. J. Org. Chem. 2010 (2010) 1290-1298.
-
[7]
[7] C.L. Zong, A. Venot, O. Dhamale, G.J. Boons, Fluorous supported modular synthesis of heparan sulfate oligosaccharides, Org. Lett. 15 (2013) 342-345.
-
[8]
[8] J. Bauer, J. Rademann, Hydrophobically assisted switching phase synthesis: the flexible combination of solid-phase and solution-phase reactions employed for oligosaccharide preparation, J. Am. Chem. Soc. 127 (2005) 7296-7297.
-
[9]
[9] J. Bauer, K. Brandenburg, U. Zaehringer, J. Rademann, Chemical synthesis of a glycolipid library by a solid-phase strategy allows elucidation of the structural specificity of immunostimulation by rhamnolipids, Chem. Eur. J. 12 (2006) 7116- 7124.
-
[10]
[10] S. Kim, A. Tsuruyama, A. Ohmori, K. Chiba, Solution-phase oligosaccharide synthesis in a cycloalkane-based thermomorphic system, Chem. Commun. 15 (2008) 1816-1818.
-
[11]
[11] A.A. Rosatella, R.F.M. Frade, C.A.M. Afonso, Dissolution and transformation of carbohydrates in ionic liquids, Curr. Org. Synth. 8 (2011) 840-860.
-
[12]
[12] W.S. Miao, T.H. Chan, Ionic-liquid-supported synthesis: a novel liquid-phase strategy for organic synthesis, Acc. Chem. Res. 39 (2006) 897-908.
-
[13]
[13] O.A. El Seoud, A. Koschella, L.C. Fidale, S. Dorn, T. Heinze, Applications of ionic liquids in carbohydrate chemistry: a window of opportunities, Biomacromolecules 8 (2007) 2629-2647.
-
[14]
[14] X. He, T.H. Chan, Ionic-tag-assisted oligosaccharide synthesis, Synthesis 2006 (2006) 1645-1651.
-
[15]
[15] J.Y. Huang, M. Lei, Y.G. Wang, A novel and efficient ionic liquid supported synthesis of oligosaccharides, Tetrahedron Lett. 47 (2006) 3047-3050.
-
[16]
[16] A.K. Pathak, C.K. Yerneni, Z. Young, V. Pathak, Oligomannan synthesis using ionic liquid supported glycosylation, Org. Lett. 10 (2008) 145-148.
-
[17]
[17] C.K. Yerneni, V. Pathak, A.K. Pathak, Imidazolium cation supported solution-phase assembly of homolinear α-(1→6)-linked octamannoside: an efficient alternate approach for oligosaccharide synthesis, J. Org. Chem. 74 (2009) 6307-6310.
-
[18]
[18] M. Pé pin, M. Hubert-Roux, C. Martin, et al., First example of α-(1→4)-glycosylation reactions on ionic liquid supports, Eur. J. Org. Chem. 2010 (2010) 6366-6371.
-
[19]
[19] J.Y. Huang, A. Li, J.R. Li, An efficient approach for the synthesis of oligosaccharides using ionic liquid supported glycosylation, Carbohydr. Polym. 83 (2011) 297-302.
-
[20]
[20] A.T. Tran, R. Burden, D.T. Racys, M.C. Galan, Ionic catch and release oligosaccharide synthesis (ICROS), Chem. Commun. 47 (2011) 4526-4528.
-
[21]
[21] I. Sittel, A.T. Tran, D. Benito-Alifonso, M.C. Galan, Combinatorial ionic catch-andrelease oligosaccharide synthesis (combi-ICROS), Chem. Commun. 49 (2013) 4217-4219.
-
[22]
[22] Q. Ma, S. Sun, X.B. Meng, et al., Assembly of homolinear a-(1→2)-linked nonamannoside on ionic liquid support, J. Org. Chem. 76 (2011) 5652-5660.
-
[23]
[23] C.G. Li, Z.X. Zhang, Q. Duan, X.B. Li, Glycopeptide synthesis on an ionic liquid support, Org. Lett. 16 (2014) 3008-3011.
-
[24]
[24] S. Hanashima, S. Manabe, Y. Ito, Divergent synthesis of sialylated glycan chains: combined use of polymer support, resin capture-release, and chemo-enzymatic strategies, Angew. Chem. Int. Ed. 44 (2005) 4218-4224.
-
[25]
[25] B.C. Jansen, Toxic antigenic factors produced by Clostridium botulinum types C and D, Onderstepoort J. Vet. Res. 38 (1971) 93-98.
-
[26]
[26] P. Bojarová , R.R. Rosencrantz, L. Elling, V. Křen, Enzymatic glycosylation of multivalent scaffolds, Chem. Soc. Rev. 42 (2013) 4774-4797.
-
[27]
[27] C. Schleberger, H. Hochmann, H. Barth, K. Aktories, G.E. Schulz, Structure and action of the binary C2 toxin from Clostridium botulinum, J. Mol. Biol. 364 (2006) 705-715.
-
[28]
[28] H. Imagawa, A. Kinoshita, H. Yamamoto, K. Namba, M. Nishizawa, Efficient glycosylation using ODS adsorption method based on the affinity of long alkoxybenzyl glycoside, Synlett 13 (2008) 1981-1984.
-
[1]
-
-
-
[1]
Tong Zhang , Xiaojing Liang , Licheng Wang , Shuai Wang , Xiaoxiao Liu , Yong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889
-
[2]
Shuying Li , Weiwei ZhuGe , Xuan Sun , Chongzhen Sun , Zhaojun Liu , Chenghe Xiong , Min Xiao , Guofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089
-
[3]
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
-
[4]
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
-
[5]
Luyu Zhang , Zirong Dong , Shuai Yu , Guangyue Li , Weiwen Kong , Wenjuan Liu , Haisheng He , Yi Lu , Wei Wu , Jianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101
-
[6]
Yixia Zhang , Caili Xue , Yunpeng Zhang , Qi Zhang , Kai Zhang , Yulin Liu , Zhaohui Shan , Wu Qiu , Gang Chen , Na Li , Hulin Zhang , Jiang Zhao , Da-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196
-
[7]
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
-
[8]
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
-
[9]
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
-
[10]
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
-
[11]
Tiankai Sun , Hui Min , Zongsu Han , Liang Wang , Peng Cheng , Wei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718
-
[12]
Chaohui Zheng , Jing Xi , Shiyi Long , Tianpei He , Rui Zhao , Xinyuan Luo , Na Chen , Quan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223
-
[13]
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381
-
[14]
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
-
[15]
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
-
[16]
Jiajia Lv , Jie Gao , Hongyu Li , Zeli Yuan , Nan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940
-
[17]
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
-
[18]
Fengkai Zou , Borui Su , Han Leng , Nini Xin , Shichao Jiang , Dan Wei , Mei Yang , Youhua Wang , Hongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523
-
[19]
Yue Mao , Zhonghang Chen , Tiankai Sun , Wenyue Cui , Peng Cheng , Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353
-
[20]
Dongdong YANG , Jianhua XUE , Yuanyu YANG , Meixia WU , Yujia BAI , Zongxuan WANG , Qi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(626)
- HTML views(22)