Citation: Long-Qiang Xiao, Xiang-Xiang Jia, Li-Qiong Liao, Li-Jian Liu. Synthesis of azo-incorporated copolymers by C1/N2C1 copolymerization under microwave irradiation[J]. Chinese Chemical Letters, ;2014, 25(12): 1601-1606. doi: 10.1016/j.cclet.2014.09.009 shu

Synthesis of azo-incorporated copolymers by C1/N2C1 copolymerization under microwave irradiation

  • Corresponding author: Li-Jian Liu, 
  • Received Date: 28 May 2014
    Available Online: 28 August 2014

    Fund Project:

  • Catalyst-free copolymerization of ethyl diazoacetate (EDA) with carbethoxycarbene (CEC) has been achieved through two approaches: microwave irradiation and enzyme-assisted (Novozyme-435) system. The structure of the copolymer was characterized by MALDI-TOF MS (m/z from 2000 to 2450), which suggested that the main chain of the copolymer consisted of -CH(COOEt)-and -N55N-CH(COOEt)-frameworks. Fourier transform infrared (FTIR) spectrometry, elemental analysis, and Raman spectrometry proved the incorporation of azo group in the copolymer. The results indicated that the CEC radicals were generated under microwave irradiation (with or without Novozyme-435) from EDA. The mechanism study described that the generation speed of CEC radical was faster than its polymerization, and the excess CEC radicals improved the activity of the N2C1 group, thus inducing some EDA molecules as radicals. The two kinds of radicals co-coupled to result in poly(CEC-co-EDA) through the C1/N2C1 copolymerization, but the homopolymerization of CEC radical occurred quicker than its cocoupling with activated EDA
  • 加载中
    1. [1]

      [1] L. Xiao, L. Liao, X. Guo, L. Liu, One-pot synthesis of polyester-polyolefin copolymers by combining ring-opening polymerization and carbene polymerization, Macromol. Chem. Phys. 214 (2013) 2500-2506.

    2. [2]

      [2] L.Q. Xiao, S.J. Cai, Q.Y. Liu, et al., One-step synthesis of polypyrazoles and selfassembled polypyrazole-copper catalysts for click chemistry, Polym. Chem. 5 (2014) 607-613.

    3. [3]

      [3] Q. Lin, P. Chen, Y.P. Fu, et al., A green synthesis of a simple chemosensor that could instantly detect cyanide with high selectivity in aqueous solution, Chin. Chem. Lett. 24 (2013) 699-702.

    4. [4]

      [4] S.J. Cai, L.Q. Xiao, L.Q. Liao, L.J. Liu, Catalyst-free cyclopropanation of alkenes with diazocompounds under microwave irradiation, Chin. J. Org. Chem. 33 (2013) 2602-2606.

    5. [5]

      [5] L.Q. Xiao, Y. Li, X.X. Jia, L.Q. Liao, L.J. Liu, Microwave-assisted one-pot copolymerization of cyclic monomers and ethyl diazoacetate, Polym. Int. 63 (2014) 1154-1158.

    6. [6]

      [6] L.Q. Xiao, L.Q. Liao, L.J. Liu, Chemical modification of graphene oxide with carbethoxycarbene under microwave irradiation, Chem. Phys. Lett. 556 (2013) 376-379.

    7. [7]

      [7] B. Mohammadi, M. Adib, Microwave assisted one-pot tandem three-component synthesis of 2,4,5-triary1-2-4-dihydro-3H-1,2,4-triazol-3-one derivatives, Chin. Chem. Lett. 25 (2014) 553-556.

    8. [8]

      [8] X.P. Ouyang, C.L. Liu, Y.X. Pang, X.Q. Qiu, Synthesis of a trimeric lignin model compound composed of a-O-4 and b-O-4 linkages under microwave irradiation, Chin. Chem. Lett. 24 (2013) 1091-1094.

    9. [9]

      [9] L.J. Liu, S.J. Cai, Y. Tan, et al., Ring opening insertion polymerization of e-caprolactone with hydrogen phosphonate initiators, J. Polym. Sci. Part A: Polym. Chem. 47 (2009) 6214-6222.

    10. [10]

      [10] S. Kobayashi, H. Uyama, S. Kimura, Enzymatic polymerization, Chem. Rev. 101 (2001) 3793-3818.

    11. [11]

      [11] Y. Yanagishita, M. Kato, K. Toshima, S. Matsumura, Chemoenzymatic synthesis and chemical recycling of sustainable polyurethanes, ChemSusChem 1 (2008) 133-142.

    12. [12]

      [12] L. Ragupathy, U. Ziener, R. Dyllick-Brenzinger, B. von Vacano, K. Landfester, Enzyme-catalyzed polymerizations at higher temperatures: synthetic methods to produce polyamides and new poly(amide-co-ester)s, J. Mol. Catal. B: Enzym. 76 (2012) 94-105.

    13. [13]

      [13] F. He, S. Li, H. Garreau, M. Vert, R. Zhuo, Enzyme-catalyzed polymerization and degradation of copolyesters of ε-caprolactone and γ-butyrolactone, Polymer 46 (2005) 12682-12688.

    14. [14]

      [14] F. He, S. Li, M. Vert, R. Zhuo, Enzyme-catalyzed polymerization and degradation of copolymers prepared from ε-caprolactone and poly(ethylene glycol), Polymer 44 (2003) 5145-5151.

    15. [15]

      [15] A.J. Arduengo, R.L. Harlow, M. Kline, A stable crystalline carbene, J. Am. Chem. Soc. 113 (1991) 361-363.

    16. [16]

      [16] C.M. Crudden, D.P. Allen, Stability and reactivity of N-heterocyclic carbene complexes, Coord. Chem. Rev. 248 (2004) 2247-2273.

    17. [17]

      [17] M.K. Samantaray, V. Katiyar, D. Roy, et al., A cationic (N-heterocyclic carbene)-silver complex as catalyst for bulk ring-opening polymerization of L-lactides, Eur. J. Inorg. Chem. 2006 (2006) 2975-2984.

    18. [18]

      [18] L. Xiao, Y. Li, L. Liao, L. Liu, Denitrogen alkene polymerization of bisdiazo compounds by copper(Ⅱ) catalysts, New J. Chem. 37 (2013) 1874-1877.

    19. [19]

      [19] A.F. Noels, Carbene chemistry: stereoregular polymers from diazo compounds, Angew. Chem. 46 (2007) 1208-1210.

    20. [20]

      [20] L. Liu, Y. Song, H. Li, Carbene polymerization: characterization of poly(carballyloxycarbene), Polym. Int. 51 (2002) 1047-1049.

    21. [21]

      [21] E. Jellema, A.L. Jongerius, J.N. Reek, B. de Bruin, C1 polymerisation and related C-C bond forming ‘carbene insertion' reactions, Chem. Soc. Rev. 39 (2010) 1706-1723.

    22. [22]

      [22] A.J.C. Walters, O. Troeppner, I. Ivanovic-Burmazovic, et al., Stereospecific carbene polymerization with oxygenated Rh(diene) species, Angew. Chem. Int. Ed. 51 (2012) 5157-5161.

    23. [23]

      [23] E. Ihara, M. Kida, M. Fujioka, et al., Palladium-mediated copolymerization of diazocarbonyl compounds with phenyldiazomethane, J. Polym. Sci. Part A: Polym. Chem. 45 (2007) 1536-1545.

    24. [24]

      [24] E. Ihara, M. Kida, T. Itoh, K. Inoue, Organoaluminum-mediated polymerization of diazoketones, J. Polym. Sci. Part A: Polym. Chem. 45 (2007) 5209-5214.

    25. [25]

      [25] E. Ihara, K. Saiki, Y. Goto, T. Itoh, K. Inoue, Polycondensation of bis(diazocarbonyl) compounds with aromatic diols and cyclic ethers: synthesis of new type of polyetherketones, Macromolecules 43 (2010) 4589-4598.

    26. [26]

      [26] E. Ihara, Y. Ishiguro, N. Yoshida, et al., (N-Heterocyclic carbene)Pd/borate initiating systems for polymerization of ethyl diazoacetate, Macromolecules 42 (2009) 8608-8610.

    27. [27]

      [27] D.G.H. Hetterscheid, C. Hendriksen, W.I. Dzik, et al., Rhodium-mediated stereoselective polymerization of “carbenes”, J. Am. Chem. Soc. 128 (2006) 9746-9752.

    28. [28]

      [28] E. Ihara, T. Hiraren, T. Itoh, K. Inoue, Palladium-mediated polymerization of cyclic diazoketones, J. Polym. Sci. Part A: Polym. Chem. 46 (2008) 1638-1648.

    29. [29]

      [29] J.D. Clark, J.D. Heise, A.S. Shah, et al., Process research, development, and pilotplant preparation of clofencet, a novel wheat hybridizing agent: lewis acidcatalyzed reaction of ethyl diazoacetate with 4-chlorophenyl hydrazonoacetaldehyde, Org. Process Res. Dev. 8 (2004) 176-185.

    30. [30]

      [30] O. Illa, C. Rodríguez-García, C. Acosta-Silva, et al., Cyclopropanation of cyclohexenone by diazomethane catalyzed by palladium diacetate: evidence for the formation of palladium(0) nanoparticles, Organometallics 26 (2007) 3306-3314.

    31. [31]

      [31] E. Ihara, A. Nakada, T. Itoh, K. Inoue, Transition metal-mediated copolymerization of diazocarbonyl compounds with alkyne and isocyanide, Macromolecules 39 (2006) 6440-6444.

    32. [32]

      [32] G.W. Cowell, A. Ledwith, Developments in the chemistry of diazo-alkanes, Quart. Rev. Chem. Soc. 24 (1970) 119-167.

    33. [33]

      [33] N.M. Franssen, J.N. Reek, B. de Bruin, A different route to functional polyolefins: olefin-carbene copolymerization, Dalton Trans. 42 (2013) 9058-9068.

    34. [34]

      [34] E. Ihara, H. Nishida, M. Fujii, T. Itoh, K. Inoue, Thermally induced polymerization and copolymerization with styrene of diazoketones in the presence of benzoquinone, Polym. Bull. 66 (2011) 3-15.

    35. [35]

      [35] H.Z. Qi, Z.H. Yang, J.X. Xu, Synthesis of 3-alkoxy/aryloxy-beta-lactams using diazoacetate esters as ketene precursors under photoirradiation, Synthesis 5 (2011) 723-730.

    36. [36]

      [36] L.Q. Liao, L.J. Liu, C. Zhang, F. He, R.X. Zhuo, Heating characteristics and polymerization of epsilon-caprolactone under microwave irradiation, J. Appl. Polym. Sci. 90 (2003) 2657-2664.

    37. [37]

      [37] L.Q. Liao, L.J. Liu, C. Zhang, et al., Microwave-assisted ring-opening polymerization of epsilon-caprolactone, J. Polym. Sci. Part A: Polym. Chem. 40 (2002) 1749-1755.

    38. [38]

      [38] L. Liao, L. Liu, C. Zhang, S. Gong, Microwave-assisted ring-opening polymerization of epsilon-caprolactone in the presence of ionic liquid, Macromol. Rapid Commun. 27 (2006) 2060-2064.

    39. [39]

      [39] K. Maruoka, M. Oishi, H. Yamamoto, Novel anionic oligomerization by a new, sequential generation of organolithium compounds, Macromolecules 29 (1996) 3328-3329.

    40. [40]

      [40] W.M. Nau, G. Greiner, H. Rau, et al., Fluorescence of 2,3-diazabicyclo[2.2.2]oct-2-ene revisited: solvent-induced quenching of the n,π*-excited state by an aborted hydrogen atom transfer, J. Phys. Chem. A 103 (1999) 1579-1584.

    41. [41]

      [41] E. Jellema, A.L. Jongerius, A.J.C. Walters, et al., Ligand design in Rh(diene)-mediated “carbene” polymerization; efficient synthesis of high-mass, highly stereoregular, and fully functionalized carbon-chain polymers, Organometallics 29 (2010) 2823-2826.

    42. [42]

      [42] E. Jellema, A.L. Jongerius, G.A. van Ekenstein, et al., Rhodium-mediated stereospecific carbene polymerization: from homopolymers to random and block copolymers, Macromolecules 43 (2010) 8892-8903.

  • 加载中
    1. [1]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    2. [2]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    3. [3]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    4. [4]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    5. [5]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

    6. [6]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    7. [7]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    8. [8]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    9. [9]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    10. [10]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    11. [11]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    12. [12]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    13. [13]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    14. [14]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    15. [15]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    16. [16]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    17. [17]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    18. [18]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

    19. [19]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    20. [20]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

Metrics
  • PDF Downloads(0)
  • Abstract views(616)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return