Citation: Hong-Qiang Liu, Jun Liu, Yang-Hui Zhang, Chang-Dong Shao, Jing-Xun Yu. Copper-catalyzed amide bond formation from formamides and carboxylic acids[J]. Chinese Chemical Letters, ;2015, 26(1): 11-14. doi: 10.1016/j.cclet.2014.09.007 shu

Copper-catalyzed amide bond formation from formamides and carboxylic acids

  • Corresponding author: Yang-Hui Zhang, 
  • Received Date: 15 May 2014
    Available Online: 14 July 2014

    Fund Project: The work was supported by the National Natural Science Foundation of China (No. 21372176) (No. 21372176) and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. (No. 11 J1409800)

  • A highly efficient copper-catalyzed approach to form amide bonds from formamides and carboxylic acids was developed. This protocol shows broad substrate scopes and high yields in the presence of 1 mol% catalyst and 4.0 equiv. formamides.
  • 加载中
    1. [1]

      [1] J.M. Humphrey, A.R. Chamberlin, Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino, Chem. Rev. 97 (1997) 2243-2266.

    2. [2]

      [2] (a) V.R. Pattabiraman, J.W. Bode, Rethinking amide bond synthesis, Nature 480 (2011) 471-479;

    3. [3]

      (b) T. Cupido, J. Tulla-Puche, J. Spengler, F. Albericio, The synthesis of naturally occurring peptides and their analogs, Curr. Opin. Drug Discov. Dev. 10 (2007) 768-783;

    4. [4]

      (c) T.J. Deming, Synthetic polypeptides for biomedical applications, Prog. Polym. Sci. 32 (2007) 858-875;

    5. [5]

      (d) H. Lundberg, F. Tinnis, N. Selander, H. Adolfsson, Catalytic amide formation from nonactivated carboxylic acids and amines, Chem. Soc. Rev. 43 (2014) 2714-2742.

    6. [6]

      [3] (a) S.Y. Han, Y.A. Kim, Recent development of peptide coupling reagents in organic synthesis, Tetrahedron 60 (2004) 2447-2467;

    7. [7]

      (b) E. Valeur, M. Bradley, Amide bond formation: beyond the myth of coupling reagents, Chem. Soc. Rev. 38 (2009) 606-631;

    8. [8]

      (c) A. El-Faham, F. Albericio, Peptide coupling reagents, more than a letter soup, Chem. Rev. 111 (2011) 6557-6602.

    9. [9]

      [4] C.L. Allen, J.M.J. Williams, Metal-catalysed approaches to amide bond formation, Chem. Soc. Rev. 40 (2011) 3405-3415.

    10. [10]

      [5] D.J.C. Constable, P.J. Dunn, J.D. Hayler, et al., Key green chemistry research areas - a perspective from pharmaceutical manufacturers, Green Chem. 9 (2007) 411-420.

    11. [11]

      [6] R.M. Lanigan, T.D. Sheppard, Recent developments in amide synthesis: direct amidation of carboxylic acids and transamidation reactions, Eur. J. Org. Chem. 33 (2013) 7453-7465.

    12. [12]

      [7] J. Muzart, N,N-Dimethylformamide: much more than a solvent, Tetrahedron 65 (2009) 8313-8323.

    13. [13]

      [8] S. Ding, N. Jiao, N,N-Dimethylformamide: a multipurpose building block, Angew. Chem. Int. Ed. 51 (2012) 9226-9237.

    14. [14]

      [9] For the synthesis of amides with formamides, see: (a) Z. Liu, J. Zhang, S. Chen, et al., Cross coupling of acyl and aminyl radicals: direct synthesis of amides catalyzed by Bu

    15. [15]

      (b) H. Huang, G. Yuan, X. Li, H. Jiang, Electrochemical synthesis of amides: direct transformation of methyl ketones with formamides, Tetrahedron Lett. 54 (2013) 7156-7159;

    16. [16]

      (c) W. Chen, K. Li, Z. Hu, et al., Utility of dysprosium as a reductant in coupling reactions of acyl chlorides: the synthesis of amides and diaryl-substituted acetylenes, Organometallics 30 (2011) 2026-2030;

    17. [17]

      (d) K. Xu, Y. Hu, S. Zhang, Z. Zha, Z. Wang, Direct amidation of alcohols with Nsubstituted formamides under transition metal-free conditions, Chem. Eur. J. 18 (2012) 9793-9797;

    18. [18]

      (e) C. Hu, X. Yan, X. Zhou, Z. Li, Copper-catalyzed formation of N,N-dimethyl benzamide from nitrile and DMF under an O2 atmosphere, Org. Biomol. Chem. 11 (2013) 8179-8182;

    19. [19]

      (f) G.M. Coppinger, Preparations of N,N-dimethylamides, J. Am. Chem. Soc. 76 (1954) 1372-1373;

    20. [20]

      (g) T. Kumagai, T. Anki, T. Ebi, et al., An effective synthesis of N,N-dimethylamides from carboxylic acids and a new route from N,N-dimethylamides to 1,2-diaryl-1,2diketones, Tetrahedron 66 (2010) 8968-8973;

    21. [21]

      (h) H. Li, J. Xie, Q. Xue, Y. Cheng, C. Zhu, Metal-free n-Bu4NI-catalyzed direct synthesis of amides from alcohols and N,N-disubstituted formamides, Tetrahedron Lett. 53 (2012) 6479-6482;

    22. [22]

      (l) J. Ju, M. Jeong, J. Moon, H.M. Jung, S. Lee, Aminocarbonylation of aryl halides using a nickel phosphite catalytic system, Org. Lett. 9 (2007) 4615-4618;

    23. [23]

      (j) D.N. Sawant, Y.S. Wagh, K.D. Bhatte, B.M. Bhanage, Palladium-catalyzed carbon-monoxide-free aminocarbonylation of aryl halides using N-substituted formamides as an amide source, J. Org. Chem. 76 (2011) 5489-5494;

    24. [24]

      (k) P.J. Tambade, Y.P. Patil, M.J. Bhanushali, B.M. Bhanage, Pd/C: an efficient, heterogeneous and reusable catalyst for carbon monoxide-free aminocarbonylation of aryl iodides, Tetrahedron Lett. 49 (2008) 2221-2224;

    25. [25]

      (l) A. Schnyder, M. Beller, G. Mehltretter, et al., Synthesis of primary aromatic amides by aminocarbonylation of aryl halides using formamide as an ammonia synthon, J. Org. Chem. 66 (2001) 4311-4315;

    26. [26]

      (m) B. Alogh-Hergovich, G. Speier, The oxygenation of flavonol by copper(I) and copper(Ⅱ) flavonolate complexes. The crystal and molecular structure of bis(flavonolato)copper(Ⅱ), J. Chem. Soc. Chem. Commun. (1991) 551-552;

    27. [27]

      (n) K. Hosoi, K. Nozaki, T. Hiyama, Carbon monoxide-free aminocarbonylation of aryl and alkenyl iodides using DMF as an amide source, Org. Lett. 4 (2002) 2849-2851;

    28. [28]

      (o) Y. Jo, J. Ju, J. Choe, K.H. Song, S. Lee, The scope and limitation of nickelcatalyzed aminocarbonylation of aryl bromides from formamide derivatives, J. Org. Chem. 74 (2009) 6358-6361;

    29. [29]

      (p) T. He, H. Li, P. Li, L. Wang, Direct amidation of azoles with formamides via metal-free C-H activation in the presence of tert-butyl perbenzoate, Chem. Commun. 47 (2011) 8946-8948;

    30. [30]

      (q) G.S. Kumar, C.U. Maheswari, R.A. Kumar, M.L. Kantam, K.R. Reddy, Coppercatalyzed oxidative C-O coupling by direct C-H bond activation of formamides: synthesis of enol carbamates and 2-carbonyl-substituted phenol carbamates, Angew. Chem. Int. Ed. 50 (2011) 11748-11751;

    31. [31]

      (r) Y. Nakao, H. Idei, K.S. Kanyiva, T. Hiyama, Hydrocarbamoylation of unsaturated bonds by nickel/Lewis-acid catalysis, J. Am. Chem. Soc. 131 (2009) 5070-5071;

    32. [32]

      (s) T. Fujihara, Y. Katafuchi, T. Iwai, J. Terao, Y. Tsuji, Palladium-catalyzed intermolecular addition of formamides to alkynes, J. Am. Chem. Soc. 132 (2010) 2094-2098.

    33. [33]

      [10] P.S. Kumar, G.S. Kumar, N.V. Reddy, K.R. Reddy, Copper-catalyzed oxidative coupling of carboxylic acids with N,N-dialkylformamides: an approach to the synthesis of amides, Eur. J. Org. Chem. (2013) 1218-1222.

    34. [34]

      [11] Y.X. Xie, R.J. Song, X.H. Yang, J.N. Xiang, J.H. Li, Copper-catalyzed amidation of acids using formamides as the amine source, Eur. J. Org. Chem. (2013) 5737-5742.

    35. [35]

      [12] S. Priyadarshini, P.J. Amal Joseph, M.L. Kantam, Copper catalyzed cross-coupling reactions of carboxylic acids: an expedient route to amides, 5-substituted glactams and a-acyloxy esters, RSC Adv. 3 (2013) 18283-18287.

    36. [36]

      [13] (a) D. Li, M. Wang, J. Liu, J.Q. Zhao, L. Wang, Cu(Ⅱ)-catalyzed decarboxylative acylation of acyl C-H of formamides with a-oxocarboxylic acids leading to a-ketoamides, Chem. Commun. 49 (2013) 3640-3642;

    37. [37]

      (b) H. Wang, L.N. Guo, X.H. Duan, Copper-catalyzed oxidative condensation of a-oxocarboxylic acids with formamides: synthesis of a-ketoamides, Org. Biomol. Chem. 11 (2013) 4573-4576.

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    3. [3]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    4. [4]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    5. [5]

      Cailing WuShaojie WuQifei HuangKai SunXianqiang HuangJianji WangBing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250

    6. [6]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    7. [7]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    8. [8]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    9. [9]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    10. [10]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    11. [11]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    12. [12]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    13. [13]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    14. [14]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    15. [15]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    16. [16]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    17. [17]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    18. [18]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    19. [19]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    20. [20]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

Metrics
  • PDF Downloads(0)
  • Abstract views(751)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return