Citation:
Hong-Qiang Liu, Jun Liu, Yang-Hui Zhang, Chang-Dong Shao, Jing-Xun Yu. Copper-catalyzed amide bond formation from formamides and carboxylic acids[J]. Chinese Chemical Letters,
;2015, 26(1): 11-14.
doi:
10.1016/j.cclet.2014.09.007
-
A highly efficient copper-catalyzed approach to form amide bonds from formamides and carboxylic acids was developed. This protocol shows broad substrate scopes and high yields in the presence of 1 mol% catalyst and 4.0 equiv. formamides.
-
Keywords:
- Amides,
- Formamides,
- Carboxylic acids,
- Copper,
- Catalysis
-
-
-
[1]
[1] J.M. Humphrey, A.R. Chamberlin, Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino, Chem. Rev. 97 (1997) 2243-2266.
-
[2]
[2] (a) V.R. Pattabiraman, J.W. Bode, Rethinking amide bond synthesis, Nature 480 (2011) 471-479;
-
[3]
(b) T. Cupido, J. Tulla-Puche, J. Spengler, F. Albericio, The synthesis of naturally occurring peptides and their analogs, Curr. Opin. Drug Discov. Dev. 10 (2007) 768-783;
-
[4]
(c) T.J. Deming, Synthetic polypeptides for biomedical applications, Prog. Polym. Sci. 32 (2007) 858-875;
-
[5]
(d) H. Lundberg, F. Tinnis, N. Selander, H. Adolfsson, Catalytic amide formation from nonactivated carboxylic acids and amines, Chem. Soc. Rev. 43 (2014) 2714-2742.
-
[6]
[3] (a) S.Y. Han, Y.A. Kim, Recent development of peptide coupling reagents in organic synthesis, Tetrahedron 60 (2004) 2447-2467;
-
[7]
(b) E. Valeur, M. Bradley, Amide bond formation: beyond the myth of coupling reagents, Chem. Soc. Rev. 38 (2009) 606-631;
-
[8]
(c) A. El-Faham, F. Albericio, Peptide coupling reagents, more than a letter soup, Chem. Rev. 111 (2011) 6557-6602.
-
[9]
[4] C.L. Allen, J.M.J. Williams, Metal-catalysed approaches to amide bond formation, Chem. Soc. Rev. 40 (2011) 3405-3415.
-
[10]
[5] D.J.C. Constable, P.J. Dunn, J.D. Hayler, et al., Key green chemistry research areas - a perspective from pharmaceutical manufacturers, Green Chem. 9 (2007) 411-420.
-
[11]
[6] R.M. Lanigan, T.D. Sheppard, Recent developments in amide synthesis: direct amidation of carboxylic acids and transamidation reactions, Eur. J. Org. Chem. 33 (2013) 7453-7465.
-
[12]
[7] J. Muzart, N,N-Dimethylformamide: much more than a solvent, Tetrahedron 65 (2009) 8313-8323.
-
[13]
[8] S. Ding, N. Jiao, N,N-Dimethylformamide: a multipurpose building block, Angew. Chem. Int. Ed. 51 (2012) 9226-9237.
-
[14]
[9] For the synthesis of amides with formamides, see: (a) Z. Liu, J. Zhang, S. Chen, et al., Cross coupling of acyl and aminyl radicals: direct synthesis of amides catalyzed by Bu
-
[15]
(b) H. Huang, G. Yuan, X. Li, H. Jiang, Electrochemical synthesis of amides: direct transformation of methyl ketones with formamides, Tetrahedron Lett. 54 (2013) 7156-7159;
-
[16]
(c) W. Chen, K. Li, Z. Hu, et al., Utility of dysprosium as a reductant in coupling reactions of acyl chlorides: the synthesis of amides and diaryl-substituted acetylenes, Organometallics 30 (2011) 2026-2030;
-
[17]
(d) K. Xu, Y. Hu, S. Zhang, Z. Zha, Z. Wang, Direct amidation of alcohols with Nsubstituted formamides under transition metal-free conditions, Chem. Eur. J. 18 (2012) 9793-9797;
-
[18]
(e) C. Hu, X. Yan, X. Zhou, Z. Li, Copper-catalyzed formation of N,N-dimethyl benzamide from nitrile and DMF under an O2 atmosphere, Org. Biomol. Chem. 11 (2013) 8179-8182;
-
[19]
(f) G.M. Coppinger, Preparations of N,N-dimethylamides, J. Am. Chem. Soc. 76 (1954) 1372-1373;
-
[20]
(g) T. Kumagai, T. Anki, T. Ebi, et al., An effective synthesis of N,N-dimethylamides from carboxylic acids and a new route from N,N-dimethylamides to 1,2-diaryl-1,2diketones, Tetrahedron 66 (2010) 8968-8973;
-
[21]
(h) H. Li, J. Xie, Q. Xue, Y. Cheng, C. Zhu, Metal-free n-Bu4NI-catalyzed direct synthesis of amides from alcohols and N,N-disubstituted formamides, Tetrahedron Lett. 53 (2012) 6479-6482;
-
[22]
(l) J. Ju, M. Jeong, J. Moon, H.M. Jung, S. Lee, Aminocarbonylation of aryl halides using a nickel phosphite catalytic system, Org. Lett. 9 (2007) 4615-4618;
-
[23]
(j) D.N. Sawant, Y.S. Wagh, K.D. Bhatte, B.M. Bhanage, Palladium-catalyzed carbon-monoxide-free aminocarbonylation of aryl halides using N-substituted formamides as an amide source, J. Org. Chem. 76 (2011) 5489-5494;
-
[24]
(k) P.J. Tambade, Y.P. Patil, M.J. Bhanushali, B.M. Bhanage, Pd/C: an efficient, heterogeneous and reusable catalyst for carbon monoxide-free aminocarbonylation of aryl iodides, Tetrahedron Lett. 49 (2008) 2221-2224;
-
[25]
(l) A. Schnyder, M. Beller, G. Mehltretter, et al., Synthesis of primary aromatic amides by aminocarbonylation of aryl halides using formamide as an ammonia synthon, J. Org. Chem. 66 (2001) 4311-4315;
-
[26]
(m) B. Alogh-Hergovich, G. Speier, The oxygenation of flavonol by copper(I) and copper(Ⅱ) flavonolate complexes. The crystal and molecular structure of bis(flavonolato)copper(Ⅱ), J. Chem. Soc. Chem. Commun. (1991) 551-552;
-
[27]
(n) K. Hosoi, K. Nozaki, T. Hiyama, Carbon monoxide-free aminocarbonylation of aryl and alkenyl iodides using DMF as an amide source, Org. Lett. 4 (2002) 2849-2851;
-
[28]
(o) Y. Jo, J. Ju, J. Choe, K.H. Song, S. Lee, The scope and limitation of nickelcatalyzed aminocarbonylation of aryl bromides from formamide derivatives, J. Org. Chem. 74 (2009) 6358-6361;
-
[29]
(p) T. He, H. Li, P. Li, L. Wang, Direct amidation of azoles with formamides via metal-free C-H activation in the presence of tert-butyl perbenzoate, Chem. Commun. 47 (2011) 8946-8948;
-
[30]
(q) G.S. Kumar, C.U. Maheswari, R.A. Kumar, M.L. Kantam, K.R. Reddy, Coppercatalyzed oxidative C-O coupling by direct C-H bond activation of formamides: synthesis of enol carbamates and 2-carbonyl-substituted phenol carbamates, Angew. Chem. Int. Ed. 50 (2011) 11748-11751;
-
[31]
(r) Y. Nakao, H. Idei, K.S. Kanyiva, T. Hiyama, Hydrocarbamoylation of unsaturated bonds by nickel/Lewis-acid catalysis, J. Am. Chem. Soc. 131 (2009) 5070-5071;
-
[32]
(s) T. Fujihara, Y. Katafuchi, T. Iwai, J. Terao, Y. Tsuji, Palladium-catalyzed intermolecular addition of formamides to alkynes, J. Am. Chem. Soc. 132 (2010) 2094-2098.
-
[33]
[10] P.S. Kumar, G.S. Kumar, N.V. Reddy, K.R. Reddy, Copper-catalyzed oxidative coupling of carboxylic acids with N,N-dialkylformamides: an approach to the synthesis of amides, Eur. J. Org. Chem. (2013) 1218-1222.
-
[34]
[11] Y.X. Xie, R.J. Song, X.H. Yang, J.N. Xiang, J.H. Li, Copper-catalyzed amidation of acids using formamides as the amine source, Eur. J. Org. Chem. (2013) 5737-5742.
-
[35]
[12] S. Priyadarshini, P.J. Amal Joseph, M.L. Kantam, Copper catalyzed cross-coupling reactions of carboxylic acids: an expedient route to amides, 5-substituted glactams and a-acyloxy esters, RSC Adv. 3 (2013) 18283-18287.
-
[36]
[13] (a) D. Li, M. Wang, J. Liu, J.Q. Zhao, L. Wang, Cu(Ⅱ)-catalyzed decarboxylative acylation of acyl C-H of formamides with a-oxocarboxylic acids leading to a-ketoamides, Chem. Commun. 49 (2013) 3640-3642;
-
[37]
(b) H. Wang, L.N. Guo, X.H. Duan, Copper-catalyzed oxidative condensation of a-oxocarboxylic acids with formamides: synthesis of a-ketoamides, Org. Biomol. Chem. 11 (2013) 4573-4576.
-
[1]
-
-
-
[1]
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
-
[2]
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
-
[3]
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
-
[4]
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
-
[5]
Cailing Wu , Shaojie Wu , Qifei Huang , Kai Sun , Xianqiang Huang , Jianji Wang , Bing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250
-
[6]
Gangsheng Li , Xiang Yuan , Fu Liu , Zhihua Liu , Xujie Wang , Yuanyuan Liu , Yanmin Chen , Tingting Wang , Yanan Yang , Peicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880
-
[7]
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
-
[8]
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
-
[9]
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
-
[10]
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
-
[11]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[12]
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
-
[13]
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
-
[14]
Rong-Nan Yi , Wei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787
-
[15]
Yutong Xiong , Ting Meng , Wendi Luo , Bin Tu , Shuai Wang , Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511
-
[16]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[17]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[18]
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
-
[19]
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
-
[20]
Lin Zhang , Chaoran Li , Thongthai Witoon , Xingda An , Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(751)
- HTML views(12)