Citation:
Mohammad Hossein Mashhadizadeh, Rasoul Pourtaghavi Talemi. Application of diazo-thiourea and gold nano-particles in the design of a highly sensitive and selective DNA biosensor[J]. Chinese Chemical Letters,
;2015, 26(1): 160-166.
doi:
10.1016/j.cclet.2014.09.004
-
An effective procedure for constructing a DNA biosensor is developed based on covalent immobilization of NH2 labeled, single strand DNA (NH2-ssDNA) onto a self-assembled diazo-thiourea and gold nanoparticles modified Au electrode (diazo-thiourea/GNM/Au). Gold nano-particles expand the electrode surface area and increase the amount of immobilized thiourea and single stranded DNA (ssDNA) onto the electrode surface. Diazo-thiourea film provides a surface with high conductibility for electron transfer and a bed for the covalent coupling of NH2-ssDNA onto the electrode surface. The immobilization and hybridization of the probe DNA on the modified electrode is studied by differential pulse voltammetry (DPV) using methylene blue (MB) as a well-known electrochemical hybridization indicator. The linear range for the determination of complementary target ssDNA is from 9.5(±0.1)×10-13 mol/L to 1.2(±0.2)×10-9 mol/L with a detection limit of 1.2(±0.1)×10-13mol/L.
-
Keywords:
- DNA biosensor,
- Gold nano-particles,
- Thiourea,
- Methylene blue
-
-
-
[1]
[1] Y. Guo, J.H. Chen, G.N. Chen, A label-free electrochemical biosensor for detection of HIV related gene based on interaction between DNA and protein, Sens. Actuators B 184 (2013) 113-117.
-
[2]
[2] M.H. Mashhadizadeh, R.P. Talemi, A novel optical DNA biosensor for detection of trace amounts of mercuric ions using gold nanoparticles introduced onto modified glass surface, Spectrochim. Acta A 132 (2014) 403-409.
-
[3]
[3] H.B. Xu, R.F. Ye, S.Y. Yang, R. Li, X. Yang, Electrochemical DNA nano-biosensor for the detection of genotoxins in water samples, Chin. Chem. Lett. 25 (2014) 29-34.
-
[4]
[4] T. Wen, W. Zhu, Ch. Xue, et al., Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@polyaniline nanoparticles for clinical detection of creatinine, Biosens. Bioelectron. 56 (2014) 180-185.
-
[5]
[5] B. Yu, H. Yuan, Y.Y. Yang, et al., Detection of dopamine using self-assembled diazoresin/single-walled carbon nanotube modified electrodes, Chin. Chem. Lett. 25 (2014) 523-528.
-
[6]
[6] B.N. Shivananju, G.R. Prashanth, S. Asokan, M.M. Varma, Reversible and irreversible pH induced conformational changes in self-assembled weak polyelectrolyte multilayers probed using etched fiber Bragg grating sensors, Sens. Actuator B 201 (2014) 37-45.
-
[7]
[7] R.K. Shervedani, S. Pourbeyram, Electrochemical determination of calf thymus DNA on Zr(IV) immobilized on gold-mercaptopropionic-acid self-assembled monolayer, Bioelectrochemistry 77 (2010) 100-105.
-
[8]
[8] X.X. Jiao, J.R. Chen, X.Y. Zhang, H.Q. Luo, N.B. Li, A chronocoulometric aptasensor based on gold nanoparticles as a signal amplification strategy for detection of thrombin, Anal. Biochem. 441 (2013) 95-100.
-
[9]
[9] F. Lisdat, D. Schä fer, The use of electrochemical impedance spectroscopy for biosensing, Anal. Bioanal. Chem. 391 (2008) 1555-1567.
-
[10]
[10] R.J. Cui, H.P. Huang, Z.Z. Yin, D. Gao, J.J. Zhu, Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor, Biosens. Bioelectron. 23 (2008) 1666-1673.
-
[11]
[11] F. Li, L. Yang, M. Chen, Y. Qian, B. Tang, A novel and versatile sensing platform based on HRP-mimicking DNAzyme-catalyzed template-guided deposition of polyaniline, Biosens. Bioelectron. 41 (2013) 903-906.
-
[12]
[12] P. Arias, N.F. Ferreyra, G.A. Rivas, S.J. Bollo, Glassy carbon electrodes modified with CNT dispersed in chitosan: analytical applications for sensing DNA-methylene blue interaction, J. Electroanal. Chem. 634 (2009) 123-126.
-
[13]
[13] J. Balintova, R. Pohl, P. Horakova, et al., Anthraquinone as a redox label for DNA: synthesis, enzymatic incorporation, and electrochemistry of Anthraquinone-Modified nucleosides, nucleotides, and DNA, Chem. Eur. J. 17 (2011) 14063-14073.
-
[14]
[14] M. Bally, J. Vörös, Nanoscale labels: nanoparticles and liposomes in the development of high-performance biosensors, Nanomedicine 4 (2009) 447-467.
-
[15]
[15] Q.X. Wang, Y. Ding, L. Wang, et al., Low-background, highly sensitive DNA biosensor by using an electrically neutral cobalt(Ⅱ) complex as the redox hybridization indicator, Chem. Asian J. 8 (2013) 1455-1462.
-
[16]
[16] Q.X. Wang, F. Gao, F. Gao, et al., A novel hybridization indicator for the lowbackground detection of short DNA fragments based on an electrically neutral cobalt(Ⅱ) complex, Biosens. Bioelectron. 32 (2012) 50-55.
-
[17]
[17] S.Y. Niu, M. Zhao, L.Z. Hu, S.S. Zhang, Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using rutin-Mn as electrochemical indicator, Sens. Actuators B 135 (2008) 200-205.
-
[18]
[18] H.W. Gao, X.W. Qi, Y. Chen, W. Sun, Electrochemical deoxyribonucleic acid biosensor based on the self-assembly film with nanogold decorated on ionic liquid modified carbon paste electrode, Anal. Chim. Acta 704 (2011) 133-138.
-
[19]
[19] J.L. Wang, F. Wang, S.J. Dong, Methylene blue as an indicator for sensitive electrochemical detection of adenosine based on aptamer switch, J. Electroanal. Chem. 626 (2009) 1-5.
-
[20]
[20] R. García-Gonzá lez, A. Costa-Garcia, M.T. Fernández-Abedul, Methylene blue covalently attached to single stranded DNA as electroactive label for potential bioassays, Sens. Actuators B 191 (2014) 784-790.
-
[21]
[21] A.E. Radi, X. Muñoz-Berbel, M. Cortina-Puig, J.L. Marty, Novel protocol for covalent immobilization of horseradish peroxidase on gold electrode surface, Electroanalysis 21 (2009) 696-700.
-
[22]
[22] G.L. Li, L.H. Liu, X.W. Qi, et al., Development of a sensitive electrochemical DNA sensor by 4-aminothiophenol self-assembled on electrodeposited nanogold electrode coupled with Au nanoparticles labeled reporter ssDNA, Electrochim. Acta 63 (2012) 312-317.
-
[23]
[23] L.E. Ahangar, M.A. Mehrgardi, Nanoparticle-functionalized nucleic acids: a strategy for amplified electrochemical detection of some single-base mismatches, Electrochim. Acta 56 (2011) 2725-2729.
-
[24]
[24] E. Farjami, L. Clima, K. Gothelf, E.E. Ferapontova,"Off-on" electrochemical hairpin- DNA-based genosensor for cancer diagnostics, Anal. Chem. 83 (2011) 1594-1602.
-
[25]
[25] F. Lucarelli, G. Marrazza, A.F.P. Turner, M. Mascini, Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors, Biosens. Bioelectron. 19 (2004) 515-530.
-
[26]
[26] H. Qi, M. Li, R. Zhang, M. Dong, L. Chen, Double electrochemical covalent coupling method based on click chemistry and diazonium chemistry for the fabrication of sensitive amperometric immunosensor, Anal. Chim. Acta 792 (2013) 28-34.
-
[27]
[27] A.J. Bard, L.R. Faulkner, Electrochemical Methods, 2nd ed., Wiley, New York, 2001.
-
[28]
[28] Y. Jin, X. Yao, Q. Liu, J. Li, Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator, Biosens. Bioelectron. 22 (2007) 1126-1130.
-
[29]
[29] Q. Loiaza, S. Campuzano, M. Pedrero, J.M. Pingarron, Designs of enterobacteriaceae Lac Z gene DNA gold screen printed biosensors, Electroanalysis 20 (2008) 1397-1405.
-
[30]
[30] Q.Y. Henry, J.L. Sanchez, D. Latta, C.K. O'Sullivan, Electrochemical quantification of DNA amplicons via the detection of non-hybridised guanine bases on low-density electrode arrays, Biosens. Bioelectron. 24 (2009) 2064-2070.
-
[31]
[31] A.B. Steel, T.M. Herne, M.J. Tarlov, Electrochemical quantitation of DNA immobilized on gold, Anal. Chem. 70 (1998) 4670-4677.
-
[32]
[32] M.H. Mashhadizadeh, R.P. Talemi, A new methodology for electrostatic immobilization of a non-labeled single strand DNA onto a self-assembled diazonium modified gold electrode and detection of its hybridization by differential pulse voltammetry, Talanta 103 (2013) 344-348.
-
[33]
[33] F. Li, W. Chen, P.J. Dong, S.S. Zhang, A simple strategy of probe DNA immobilization by diazotization-coupling on self-assembled 4-aminothiophenol for DNA electrochemical biosensor, Biosens. Bioelectron. 24 (2009) 2160-2164.
-
[34]
[34] F. Li, W. Chen, S.S. Zhang, Development of DNA electrochemical biosensor based on covalent immobilization of probe DNA by direct coupling of sol-gel and selfassembly technologies, Biosens. Bioelectron. 24 (2008) 781-786.
-
[35]
[35] Y. Bo,H. Yang, Y.Hu, T. Yao, S.S. Huang, A novel electrochemicalDNA biosensor based on graphene and polyaniline nanowires, Electrochim. Acta 56 (2011) 2671-2676.
-
[36]
[36] W. Sun, P. Qin, H. Gao, G. Li, K. Jiao, Electrochemical DNA biosensor based on chitosan/nano-V2O5/MWCNTs composite film modified carbon ionic liquid electrode and its application to the LAMP product of Yersinia enterocolitica gene sequence, Biosens. Bioelectron. 25 (2010) 1264-1270.
-
[37]
[37] H.J. Jang, I.H. Cho, H.S. Kim, et al., Development of a chemiluminometric immunosensor array for on-site monitoring of genetically modified organisms, Sens. Actuators B 156 (2011) 599-605.
-
[1]
-
-
-
[1]
Mengfan Zhang , Lingyan Liu , Peng Wei , Wei Feng , Tao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127
-
[2]
Chang Liu , Tao Wu , Lijiao Deng , Xuzi Li , Xin Fu , Shuzhen Liao , Wenjie Ma , Guoqiang Zou , Hai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307
-
[3]
Gaowa Xing , Yuting Shang , Xiaorui Wang , Zengnan Wu , Qiang Zhang , Jiebing Ai , Qiaosheng Pu , Ling Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491
-
[4]
Yuxin Xiao , Xiaowei Wang , Yutong Yin , Fangchao Yin , Jinchao Li , Zhiyuan Hou , Mashooq Khan , Rusong Zhao , Wenli Wu , Qiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718
-
[5]
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
-
[6]
Hui Liu , Xiangyang Tang , Zhuang Cheng , Yin Hu , Yan Yan , Yangze Xu , Zihan Su , Futong Liu , Ping Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809
-
[7]
Xinqiong Li , Guocheng Rao , Xi Peng , Chan Yang , Yanjing Zhang , Yan Tian , Xianghui Fu , Jia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419
-
[8]
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
-
[9]
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
-
[10]
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
-
[11]
Pingping Wang , Huixian Miao , Kechuan Sheng , Bin Wang , Fan Feng , Xuankun Cai , Wei Huang , Dayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600
-
[12]
Liwen Wang , Boyang Wang , Siyu Lu , Shubo Lv , Xiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497
-
[13]
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
-
[14]
Xiaohong Wen , Mei Yang , Lie Li , Mingmin Huang , Wei Cui , Suping Li , Haiyan Chen , Chen Li , Qiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291
-
[15]
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
-
[16]
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
-
[17]
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
-
[18]
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
-
[19]
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
-
[20]
Zhe-Han Yang , Jie Yin , Lei Xin , Yuanfang Li , Yijie Huang , Ruo Yuan , Ying Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(748)
- HTML views(2)