Citation: Mohammad Hossein Mashhadizadeh, Rasoul Pourtaghavi Talemi. Application of diazo-thiourea and gold nano-particles in the design of a highly sensitive and selective DNA biosensor[J]. Chinese Chemical Letters, ;2015, 26(1): 160-166. doi: 10.1016/j.cclet.2014.09.004 shu

Application of diazo-thiourea and gold nano-particles in the design of a highly sensitive and selective DNA biosensor

  • Corresponding author: Rasoul Pourtaghavi Talemi, 
  • Received Date: 26 May 2014
    Available Online: 29 August 2014

  • An effective procedure for constructing a DNA biosensor is developed based on covalent immobilization of NH2 labeled, single strand DNA (NH2-ssDNA) onto a self-assembled diazo-thiourea and gold nanoparticles modified Au electrode (diazo-thiourea/GNM/Au). Gold nano-particles expand the electrode surface area and increase the amount of immobilized thiourea and single stranded DNA (ssDNA) onto the electrode surface. Diazo-thiourea film provides a surface with high conductibility for electron transfer and a bed for the covalent coupling of NH2-ssDNA onto the electrode surface. The immobilization and hybridization of the probe DNA on the modified electrode is studied by differential pulse voltammetry (DPV) using methylene blue (MB) as a well-known electrochemical hybridization indicator. The linear range for the determination of complementary target ssDNA is from 9.5(±0.1)×10-13 mol/L to 1.2(±0.2)×10-9 mol/L with a detection limit of 1.2(±0.1)×10-13mol/L.
  • 加载中
    1. [1]

      [1] Y. Guo, J.H. Chen, G.N. Chen, A label-free electrochemical biosensor for detection of HIV related gene based on interaction between DNA and protein, Sens. Actuators B 184 (2013) 113-117.

    2. [2]

      [2] M.H. Mashhadizadeh, R.P. Talemi, A novel optical DNA biosensor for detection of trace amounts of mercuric ions using gold nanoparticles introduced onto modified glass surface, Spectrochim. Acta A 132 (2014) 403-409.

    3. [3]

      [3] H.B. Xu, R.F. Ye, S.Y. Yang, R. Li, X. Yang, Electrochemical DNA nano-biosensor for the detection of genotoxins in water samples, Chin. Chem. Lett. 25 (2014) 29-34.

    4. [4]

      [4] T. Wen, W. Zhu, Ch. Xue, et al., Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@polyaniline nanoparticles for clinical detection of creatinine, Biosens. Bioelectron. 56 (2014) 180-185.

    5. [5]

      [5] B. Yu, H. Yuan, Y.Y. Yang, et al., Detection of dopamine using self-assembled diazoresin/single-walled carbon nanotube modified electrodes, Chin. Chem. Lett. 25 (2014) 523-528.

    6. [6]

      [6] B.N. Shivananju, G.R. Prashanth, S. Asokan, M.M. Varma, Reversible and irreversible pH induced conformational changes in self-assembled weak polyelectrolyte multilayers probed using etched fiber Bragg grating sensors, Sens. Actuator B 201 (2014) 37-45.

    7. [7]

      [7] R.K. Shervedani, S. Pourbeyram, Electrochemical determination of calf thymus DNA on Zr(IV) immobilized on gold-mercaptopropionic-acid self-assembled monolayer, Bioelectrochemistry 77 (2010) 100-105.

    8. [8]

      [8] X.X. Jiao, J.R. Chen, X.Y. Zhang, H.Q. Luo, N.B. Li, A chronocoulometric aptasensor based on gold nanoparticles as a signal amplification strategy for detection of thrombin, Anal. Biochem. 441 (2013) 95-100.

    9. [9]

      [9] F. Lisdat, D. Schä fer, The use of electrochemical impedance spectroscopy for biosensing, Anal. Bioanal. Chem. 391 (2008) 1555-1567.

    10. [10]

      [10] R.J. Cui, H.P. Huang, Z.Z. Yin, D. Gao, J.J. Zhu, Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor, Biosens. Bioelectron. 23 (2008) 1666-1673.

    11. [11]

      [11] F. Li, L. Yang, M. Chen, Y. Qian, B. Tang, A novel and versatile sensing platform based on HRP-mimicking DNAzyme-catalyzed template-guided deposition of polyaniline, Biosens. Bioelectron. 41 (2013) 903-906.

    12. [12]

      [12] P. Arias, N.F. Ferreyra, G.A. Rivas, S.J. Bollo, Glassy carbon electrodes modified with CNT dispersed in chitosan: analytical applications for sensing DNA-methylene blue interaction, J. Electroanal. Chem. 634 (2009) 123-126.

    13. [13]

      [13] J. Balintova, R. Pohl, P. Horakova, et al., Anthraquinone as a redox label for DNA: synthesis, enzymatic incorporation, and electrochemistry of Anthraquinone-Modified nucleosides, nucleotides, and DNA, Chem. Eur. J. 17 (2011) 14063-14073.

    14. [14]

      [14] M. Bally, J. Vörös, Nanoscale labels: nanoparticles and liposomes in the development of high-performance biosensors, Nanomedicine 4 (2009) 447-467.

    15. [15]

      [15] Q.X. Wang, Y. Ding, L. Wang, et al., Low-background, highly sensitive DNA biosensor by using an electrically neutral cobalt(Ⅱ) complex as the redox hybridization indicator, Chem. Asian J. 8 (2013) 1455-1462.

    16. [16]

      [16] Q.X. Wang, F. Gao, F. Gao, et al., A novel hybridization indicator for the lowbackground detection of short DNA fragments based on an electrically neutral cobalt(Ⅱ) complex, Biosens. Bioelectron. 32 (2012) 50-55.

    17. [17]

      [17] S.Y. Niu, M. Zhao, L.Z. Hu, S.S. Zhang, Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using rutin-Mn as electrochemical indicator, Sens. Actuators B 135 (2008) 200-205.

    18. [18]

      [18] H.W. Gao, X.W. Qi, Y. Chen, W. Sun, Electrochemical deoxyribonucleic acid biosensor based on the self-assembly film with nanogold decorated on ionic liquid modified carbon paste electrode, Anal. Chim. Acta 704 (2011) 133-138.

    19. [19]

      [19] J.L. Wang, F. Wang, S.J. Dong, Methylene blue as an indicator for sensitive electrochemical detection of adenosine based on aptamer switch, J. Electroanal. Chem. 626 (2009) 1-5.

    20. [20]

      [20] R. García-Gonzá lez, A. Costa-Garcia, M.T. Fernández-Abedul, Methylene blue covalently attached to single stranded DNA as electroactive label for potential bioassays, Sens. Actuators B 191 (2014) 784-790.

    21. [21]

      [21] A.E. Radi, X. Muñoz-Berbel, M. Cortina-Puig, J.L. Marty, Novel protocol for covalent immobilization of horseradish peroxidase on gold electrode surface, Electroanalysis 21 (2009) 696-700.

    22. [22]

      [22] G.L. Li, L.H. Liu, X.W. Qi, et al., Development of a sensitive electrochemical DNA sensor by 4-aminothiophenol self-assembled on electrodeposited nanogold electrode coupled with Au nanoparticles labeled reporter ssDNA, Electrochim. Acta 63 (2012) 312-317.

    23. [23]

      [23] L.E. Ahangar, M.A. Mehrgardi, Nanoparticle-functionalized nucleic acids: a strategy for amplified electrochemical detection of some single-base mismatches, Electrochim. Acta 56 (2011) 2725-2729.

    24. [24]

      [24] E. Farjami, L. Clima, K. Gothelf, E.E. Ferapontova,"Off-on" electrochemical hairpin- DNA-based genosensor for cancer diagnostics, Anal. Chem. 83 (2011) 1594-1602.

    25. [25]

      [25] F. Lucarelli, G. Marrazza, A.F.P. Turner, M. Mascini, Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors, Biosens. Bioelectron. 19 (2004) 515-530.

    26. [26]

      [26] H. Qi, M. Li, R. Zhang, M. Dong, L. Chen, Double electrochemical covalent coupling method based on click chemistry and diazonium chemistry for the fabrication of sensitive amperometric immunosensor, Anal. Chim. Acta 792 (2013) 28-34.

    27. [27]

      [27] A.J. Bard, L.R. Faulkner, Electrochemical Methods, 2nd ed., Wiley, New York, 2001.

    28. [28]

      [28] Y. Jin, X. Yao, Q. Liu, J. Li, Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator, Biosens. Bioelectron. 22 (2007) 1126-1130.

    29. [29]

      [29] Q. Loiaza, S. Campuzano, M. Pedrero, J.M. Pingarron, Designs of enterobacteriaceae Lac Z gene DNA gold screen printed biosensors, Electroanalysis 20 (2008) 1397-1405.

    30. [30]

      [30] Q.Y. Henry, J.L. Sanchez, D. Latta, C.K. O'Sullivan, Electrochemical quantification of DNA amplicons via the detection of non-hybridised guanine bases on low-density electrode arrays, Biosens. Bioelectron. 24 (2009) 2064-2070.

    31. [31]

      [31] A.B. Steel, T.M. Herne, M.J. Tarlov, Electrochemical quantitation of DNA immobilized on gold, Anal. Chem. 70 (1998) 4670-4677.

    32. [32]

      [32] M.H. Mashhadizadeh, R.P. Talemi, A new methodology for electrostatic immobilization of a non-labeled single strand DNA onto a self-assembled diazonium modified gold electrode and detection of its hybridization by differential pulse voltammetry, Talanta 103 (2013) 344-348.

    33. [33]

      [33] F. Li, W. Chen, P.J. Dong, S.S. Zhang, A simple strategy of probe DNA immobilization by diazotization-coupling on self-assembled 4-aminothiophenol for DNA electrochemical biosensor, Biosens. Bioelectron. 24 (2009) 2160-2164.

    34. [34]

      [34] F. Li, W. Chen, S.S. Zhang, Development of DNA electrochemical biosensor based on covalent immobilization of probe DNA by direct coupling of sol-gel and selfassembly technologies, Biosens. Bioelectron. 24 (2008) 781-786.

    35. [35]

      [35] Y. Bo,H. Yang, Y.Hu, T. Yao, S.S. Huang, A novel electrochemicalDNA biosensor based on graphene and polyaniline nanowires, Electrochim. Acta 56 (2011) 2671-2676.

    36. [36]

      [36] W. Sun, P. Qin, H. Gao, G. Li, K. Jiao, Electrochemical DNA biosensor based on chitosan/nano-V2O5/MWCNTs composite film modified carbon ionic liquid electrode and its application to the LAMP product of Yersinia enterocolitica gene sequence, Biosens. Bioelectron. 25 (2010) 1264-1270.

    37. [37]

      [37] H.J. Jang, I.H. Cho, H.S. Kim, et al., Development of a chemiluminometric immunosensor array for on-site monitoring of genetically modified organisms, Sens. Actuators B 156 (2011) 599-605.

  • 加载中
    1. [1]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    2. [2]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    3. [3]

      Gaowa XingYuting ShangXiaorui WangZengnan WuQiang ZhangJiebing AiQiaosheng PuLing Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491

    4. [4]

      Yuxin XiaoXiaowei WangYutong YinFangchao YinJinchao LiZhiyuan HouMashooq KhanRusong ZhaoWenli WuQiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718

    5. [5]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    6. [6]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    7. [7]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    8. [8]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    9. [9]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    10. [10]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    11. [11]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    12. [12]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    13. [13]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    14. [14]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    15. [15]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    16. [16]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    17. [17]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    18. [18]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    19. [19]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    20. [20]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

Metrics
  • PDF Downloads(0)
  • Abstract views(749)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return