Citation: Chang-Lei Liu, Gang Wu, Si-Chong Chen, Jiao You, Yu-Zhong Wang. Crystallization induced micellization of poly(p-dioxanone)-block-polyethylene glycol diblock copolymer functionalized with pyrene moiety[J]. Chinese Chemical Letters, ;2014, 25(10): 1311-1317. doi: 10.1016/j.cclet.2014.07.009 shu

Crystallization induced micellization of poly(p-dioxanone)-block-polyethylene glycol diblock copolymer functionalized with pyrene moiety

  • Corresponding author: Si-Chong Chen,  Yu-Zhong Wang, 
  • Received Date: 20 May 2014
    Available Online: 10 July 2014

    Fund Project:

  • Poly(p-dioxanone)-block-polyethylene glycol diblock copolymers functionalized with pyrene moieties (Py-PPDO-b-PEG) at the chain ends of PPDO blocks were synthesized for preparing anisotropic micelles with improved stability. The micellization and crystallization of the copolymers were investigated by nano differential scanning calorimetry (Nano DSC), transmission electron microscopy (TEM), UV-vis spectrophotometery, fluorophotometer, and dynamic light scattering (DLS), respectively. The results indicated that the aggregation of pyrene induced by intermolecular interaction lead to micellization of Py-PPDO-b-PEG at much lower concentrations than those of PPDO-b-PEG copolymers without pyrene moieties. The aggregation of pyrene moieties may also serve as nucleation agent and therefore enhance the crystallization rate of PPDO blocks. Fluorescence measurements by using Nile Red as the fluorescent agent indicated that the micelles of Py-PPDO-b-PEG have high stability and load capacity for hydrophobic molecules.
  • 加载中
    1. [1]

      [1] W.N. He, J.T. Xu, Crystallization assisted self-assembly of semicrystalline block copolymers, Prog. Polym. Sci. 37 (2012) 1350-1400.

    2. [2]

      [2] P.A. Rupar, L. Chabanne, M.A. Winnik, I. Manners, Non-centrosymmetric cylindrical micelles by unidirectional growth, Science 337 (2012) 559-562.

    3. [3]

      [3] H. Qiu, G. Cambridge, M.A. Winnik, I. Manners, Multi-armed micelles and block co-micelles via crystallization-driven self-assembly with homopolymer nanocrystals as initiators, J. Am. Chem. Soc. 135 (2013) 12180-12183.

    4. [4]

      [4] N. Petzetakis, A.P. Dove, R.K. O'Reilly, Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing block copolymers, Chem. Sci. 2 (2011) 955-960.

    5. [5]

      [5] N. Petzetakis, D. Walker, A.P. Dove, R.K. O'Reilly, Crystallization-driven sphere-to-rod transition of poly(lactide)-b-poly(acrylic acid) diblock copolymers: mechanism and kinetics, Soft Matter 8 (2012) 7408-7414.

    6. [6]

      [6] J. Schmelz, M. Karg, T. Hellweg, H. Schmalz, General pathway toward crystallinecore micelles with tunable morphology and corona segregation, ACS Nano 5 (2011) 9523-9534.

    7. [7]

      [7] Y. Zhao, X. Shi, H. Gao, et al., Thermo-and pH-sensitive polyethylene-based diblock and triblock copolymers: synthesis and self-assembly in aqueous solution, J. Mater. Chem. 22 (2012) 5737-5745.

    8. [8]

      [8] Z.Y. Li, R. Liu, B.Y. Mai, et al., Temperature-induced and crystallization-driven selfassembly of polyethylene-b-poly(ethylene oxide) in solution, Polymer 54 (2013) 1663-1670.

    9. [9]

      [9] D.D. Yao, Y.J. Guo, S.G. Chen, J.N. Tang, Y.M. Chen, Shaped core/shell polymer nanoobjects with high antibacterial activities via block copolymer microphase separation, Polymer 54 (2013) 3485-3491.

    10. [10]

      [10] A.M. Mihut, J.J. Crassous, J.F. Dechézelles, et al., Towards smart self-assembly of colloidal silica particles through diblock copolymer crystallization, Polymer 54 (2013) 3874-3881.

    11. [11]

      [11] W.N. He, B. Zhou, J.T. Xu, B.Y. Du, Z.Q. Fan, Two growth modes of semicrystalline cylindrical poly(e-caprolactone)-b-poly(ethylene oxide) micelles, Macromolecules 45 (2012) 9768-9778.

    12. [12]

      [12] L.G. Yin, M.A. Hillmyer, Disklike micelles in water from polyethylene-containing diblock copolymers, Macromolecules 44 (2011) 3021-3028.

    13. [13]

      [13] S.C. Chen, G. Wu, J. Shi, Y.Z. Wang, Novel "star anise"-like nano aggregate prepared by self-assembling of preformed microcrystals from branched crys-talline-coil alternating multi-block copolymer, Chem. Commun. 47 (2011) 4198-4200.

    14. [14]

      [14] H. Wang, C.L. Liu, G. Wu, et al., Temperature dependent morphological evolution and formation mechanism of anisotropic nano aggregates from crystalline-coil block copolymer of poly(p-dioxanone) and poly (ethylene glycol), Soft Matter 9 (2013) 8712-8722.

    15. [15]

      [15] G. Wu, S.C. Chen, X.L. Wang, et al., Dynamic origin and thermally induced evolution of new self-assembled aggregates from an amphiphilic comb-like graft copolymer: a multiscale and multimorphological procedure, Chem. Eur. J. 18 (2012) 12237-12241.

    16. [16]

      [16] F. Song, W.T. Shi, X.T. Dong, et al., Fennel-like nanoaggregates based on polysaccharide derivatives and their application in drug delivery, Colloids Surf. B 113 (2014) 501-504.

    17. [17]

      [17] S.C. Chen, L.L. Li, H. Wang, et al., Synthesis and micellization of amphiphilic multibranched poly(p-dioxanone)-block-poly(ethylene glycol), Polym. Chem. 3 (2012) 1231-1238.

    18. [18]

      [18] F.Y. Zhai, W. Huang, G. Wu, et al., Nanofibers with very fine core-shell morphology from anisotropic micelle of amphiphilic crystalline-coil block copolymer, ACS nano 7 (2013) 4892-4901.

    19. [19]

      [19] G. Riess, Micellization of block copolymers, Prog. Polym. Sci. 28 (2003) 1107-1170.

    20. [20]

      [20] T.C. Lai, H. Cho, G.S. Kwon, Reversibly core cross-linked polymeric micelles with pH-and reduction-sensitivities: effects of cross-linking degree on particle stability, drug release kinetics, and anti-tumor efficacy, Polym. Chem. 5 (2014) 1650-1661.

    21. [21]

      [21] J. RiosDoria, A. Carie, T. Costich, et al., A versatile polymer micelle drug delivery system for encapsulation and in vivo stabilization of hydrophobic anticancer drugs, J. Drug Deliv. 2012 (2012) (Article ID 951741).

    22. [22]

      [22] M. Harada, I. Bobe, H. Saito, et al., Improved anti-tumor activity of stabilized anthracy-cline polymeric micelle formulation, NC-6300, Cancer Sci. 102 (2011) 192-199.

    23. [23]

      [23] P. Opanasopit, M. Yokoyama, M. Watanabe, et al., Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting, Pharm. Res. 21 (2004) 2001-2008.

    24. [24]

      [24] X.L. Wang, Y.R. Mou, S.C. Chen, et al., A water-soluble PPDO/PEG alternating multiblock copolymer: synthesis, characterization, and its gel-sol transition behavior, Eur. Polym. J. 45 (2009) 1190-1197.

    25. [25]

      [25] L. Yan, W. Wu, W. Zhao, et al., Reduction-sensitive core-cross-linked mPEG-poly (ester-carbonate) micelles for glutathione-triggered intracellular drug release, Polym. Chem. 3 (2012) 2403-2412.

    26. [26]

      [26] C.J. Chen, Q. Jin, G.Y. Liu, et al., Reversibly light-responsive micelles constructed via a simple modification of hyperbranched polymers with chromophores, Polymer 53 (2012) 3695-3703.

    27. [27]

      [27] M. Krishna, Excited-state kinetics of the hydrophobic probe Nile Red in membranes and micelles, J. Phys. Chem. A 103 (1999) 3589-3595.

  • 加载中
    1. [1]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    2. [2]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    3. [3]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    4. [4]

      Bin Chen Chaoyang Zheng Dehuan Shi Yi Huang Renxia Deng Yang Wei Zheyuan Liu Yan Yu Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468

    5. [5]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    6. [6]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    7. [7]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    8. [8]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    9. [9]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    10. [10]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    11. [11]

      Yarui Li Huangjie Lu Yingzhe Du Jie Qiu Peng Lin Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562

    12. [12]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    13. [13]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    14. [14]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    15. [15]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    16. [16]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    17. [17]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    18. [18]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    19. [19]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    20. [20]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

Metrics
  • PDF Downloads(0)
  • Abstract views(708)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return