Citation:
Dao-Lin Wang, Jian-Ying Wu, Qing-Tao Cui. An efficient one-pot synthesis of thiophene-fused pyrido[3,2-a]azulenes via Gewald reaction[J]. Chinese Chemical Letters,
;2014, 25(12): 1591-1594.
doi:
10.1016/j.cclet.2014.07.007
-
A simple and efficient procedure was developed for the synthesis of 11H(2H)-4-oxothiophene[3',4':6,5]pyrido[3,2-a]azulene-10-carboxylates (3) in moderate to good yields via the Gewald reaction of ethyl 1-cyanoacetyl-2-methoxyazulene-3-carboxylate (1) with carbonyl compounds (2) and elemental sulfur utilizing imidazole as catalyst. This reaction provides a new procedure for synthesis of pyridinone-fused azulenes.
-
Keywords:
- Azulene,
- Thiophene,
- Pyridinone,
- Gewald reaction
-
-
-
[1]
[1] P.M. Weintraub, J.S. Sabol, J.M. Kane, D.R. Borcherding, Recent advances in the synthesis of piperidones and piperidines, Tetrahedron 59 (2003) 2953-2989.
-
[2]
[2] D.D. Erol, N. Yulug, Synthesis and antimicrobial investigation of thiazolinoalkyl-4(H)-pyridiones, Eur. J. Med. Chem. 29 (1994) 893-897.
-
[3]
[3] L.J. Huang, M.C. Hsieh, C.M. Teng, K.H. Lee, S.C. Kuo, Synthesis and antiplatelet activity of phenyl quinolones, Bioorg. Med. Chem. 6 (1998) 1657-1662.
-
[4]
[4] C.T. Chen, M.H. Hsu, Y.Y. Cheng, et al., Synthesis and in vitro anticancer activity of 6,7-methylenedioxy (or 5-hydroxy-6-methoxy)-2-(substituted selenophenyl)-quinolin-4-one analogs, Eur. J. Med. Chem. 46 (2011) 6046-6056.
-
[5]
[5] T.S. Jagodzinski, Thioamides as useful synthons in the synthesis of heterocycles, Chem. Rev. 103 (2003) 197-228.
-
[6]
[6] M.S.Yen, I.J.Wang, Synthesis andabsorptionspectra ofhetarylazodyes derived from coupler 4-aryl-3-cyano-2-aminothiophenes, Dyes Pigments 61 (2004) 243-250.
-
[7]
[7] C. Wu, E.R. Decker, N. Blok, et al., Discovery, modeling, and human pharmacokinetics of N-(2-acetyl-4,6-dimethylphenyl)-3-(3,4-dimethyl isoxazol-5-ylsulfamoyl) thiophene-2-carboxamide (TBC3711), a second generation, ETA selective, and orally bioavailable endothelin antagonist, J. Med. Chem. 47 (2004) 1969-1986.
-
[8]
[8] K. Doré, S. Dubus, H.A. Ho, et al., Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level, J. Am. Chem. Soc. 126 (2004) 4240-4244.
-
[9]
[9] (a) K. Gewald, Heterocyclen aus CH-aciden nitrilen, VII. 2-Amino-thiophene aus a-oxo-mercaptanen und methylenaktiven nitrilen, Chem. Ber. 98 (1965) 3571-3577; (b) K. Gewald, M. Gruner, U. Hain, G. Sü ptitz, Zur ringumwandlung von 2-aminothiophen-3-carbonsäureestern: pyridon-und pyridazinon-derivate, Monatsh. Chem. 119 (1988) 985-992; (c) X.G. Huang, J. Liu, J. Ren, et al., A facile and practical one-pot synthesis of multisubstituted 2-aminothiophenes via imidazole-catalyzed Gewald reaction, Tetrahedron 67 (2011) 6202-6205.
-
[10]
[10] T. Yanagisawa, S. Wakabayashi, T. Tomiyama, et al., Synthesis and anti-ulcer activities of sodium alkylazulene sulfonates, Chem. Pharm. Bull. 36 (1988) 641-647.
-
[11]
[11] (a) A.E. Asato, A. Peng, M.Z. Hossain, et al., Azulenic retinoids: novel nonbenzenoid aromatic retinoids with anticancer activity, J. Med. Chem. 36 (1993) 3137-3147; (b) B.C. Hong, Y.F. Jiang, E.S. Kumar, Microwave-assisted [6 + 4]-cycloaddition of fulvenes and α-pyrones to azulene-indoles: facile syntheses of novel antineoplastic agents, Bioorg. Med. Chem. Lett. 11 (2001) 1981-1984.
-
[12]
[12] D.A. Becker, J.J. Ley, L. Echegoyen, et al., Stilbazulenyl nitrone (STAZN): a nitronylsubstituted hydrocarbon with the potency of classical phenolic chain-breaking antioxidants, J. Am. Chem. Soc. 124 (2002) 4678-4684.
-
[13]
[13] (a) T. Morita, T. Nakadate, K. Takase, A facile method for the synthesis of azuleno[2,1-b]furan and azuleno[2,1-b]pyrrole derivatives and their some properties, Heterocycles 15 (1981) 835-838; (b) M. Nishiura, I. Ueda, K. Yamamura, Synthesis of 4-(azuleno[b]indolyl)-3-buten-2-ones by intramolecular tropylium ion-mediated furan ring-unravelled reaction, Heterocycles 74 (2007) 951-960; (c) S. Ito, T. Okujima, S. Kikuchi, et al., Synthesis and intramolecular pericyclization of 1-azulenyl thioketones, J. Org. Chem 73 (2008) 2256-2263; (d) D.L. Wang, S.F. Li, W. Li, et al., An efficient synthesis of 3-(guaiazulene-1-yl)succinimides by addition of guaiazulene to maleimides, Chin. Chem. Lett. 22 (2011) 789-792; (e) D.L. Wang, Z. Dong, J. Xu, D. Li, An efficient synthesis of 2-(guaiazulen-1-yl)furan derivatives via intramolecular Wittig reactions, Chin. Chem. Lett. 24 (2013) 622-624.
-
[14]
[14] G. Fischer, Chapter 3. Azulenes fused to heterocycles, Advances in Heterocyclic Chemistry, vol. 97, 2009, pp. 131-238.
-
[15]
[15] (a) D.L. Wang, Q.T. Cui, S.S. Feng, et al., A new synthesis approach to azuleno[2,1-b]pyridine-4(1H)-ones, Heterocyles 85 (2012) 697-704; (b) D.L. Wang, Z. Dong, Q.T. Cui, et al., Synthesis of some pyrazole-fused pyrido[3,2-a]azulenes, Heterocyles 87 (2013) 2343-2350.
-
[16]
[16] Physical and spectral (IR, NMR, Anal.) data: 3a:Mp 110-112 ℃. IR (KBr, cm-1): ν 3423 (NH), 1674 (C5O), 1658 (C5O). 1H NMR (400 MHz, CDCl3): δ 1.58 (t, 3H, J = 7.2 Hz), 2.36 (s, 3H), 4.55 (q, 2H, J = 7.2 Hz), 7.54 (s, 1H), 7.80-7.87 (m, 3H), 9.46 (d, 1H, J = 10.4 Hz), 10.22 (d, 1H, J = 10.0 Hz), 11.32 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 16.1, 27.2, 60.4, 101.3, 112.3, 117.5, 127.8, 131.9, 133.7, 135.2, 135.8, 137.3, 137.6, 142.3, 144.4, 145.5, 150.7, 165.2, 172.5. Anal. Calcd. for C19H15NO3S: C 67.64, H 4.48, N 4.15, S 9.50; Found: C 67.79, H 4.64, N 4.27, S 9.61. 3b: Mp 96-98 ℃. IR (KBr, cm-1): ν 3414 (NH), 1684 (C5O), 1653 (C5O). 1H NMR (400 MHz, CDCl3): δ 1.37 (t, 6H, J = 7.2 Hz), 1.55 (t, 3H, J = 7.2 Hz), 2.88 (q, 2H, J = 7.2 Hz), 4.56 (q, 2H, J = 7.2 Hz), 7.51 (s, 1H), 7.81-7.90 (m, 3H), 9.43 (d, 1H, J = 10.4 Hz), 10.20 (d, 1H, J = 10.0 Hz), 11.36 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 14.6, 15.2, 25.6, 60.7, 100.2, 112.1, 118.6, 127.7, 132.6, 133.4, 135.7, 135.9, 137.3, 137.9, 142.0, 144.4, 145.7, 150.5, 165.5, 172.8. Anal. Calcd. for C20H17NO3S: C 68.36, H 4.88, N 3.99, S 9.12; Found: C 68.45, H 4.95, N 4.16, S 9.24. 3c: Mp 165-167 ℃. IR (KBr, cm-1): ν 3424 (NH), 1682 (C5O), 1658 (C5O). 1H NMR(400 MHz, CDCl3): δ 1.01 (t, 3H, J = 3.6 Hz), 1.53 (t, 3H, J = 7.2 Hz), 1.72-1.77 (m, 2H), 2.80-2.83 (m, 2H), 4.55 (q, 2H, J = 7.2 Hz), 7.41 (s, 1H), 7.78-7.81 (m, 1H), 7.85-7.88 (m, 2H), 9.41 (d, 1H, J = 10.0 Hz), 10.20 (d, 1H, J = 9.2 Hz), 11.53 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 13.6, 14.7, 24.2, 32.3, 60.6, 100.1, 112.2, 119.3, 127.8, 132.2, 133.3, 135.6, 136.1, 136.8, 137.1, 142.1, 144.2, 146.6, 150.6, 166.4, 173.5. Anal. Calcd. for C21H19NO3S: C 69.02, H 5.24, N 3.83, S 8.77; Found: C 69.19, H 5.34, N 3.95, S 8.89. 3d:Mp 174-176 ℃. IR (KBr, cm-1): ν 3435 (NH), 1689 (C5O), 1643 (C5O). 1H NMR (400 MHz, CDCl3): δ 1.38 (d, 6H, J = 6.8 Hz), 1.54 (t, 3H, J = 6.8 Hz), 3.17-3.20 (m, 1H), 4.56 (q, 2H, J = 6.8 Hz), 7.46 (s, 1H), 7.80-7.87 (m, 3H), 9.42 (d, 1H, J = 10.0 Hz), 10.21 (d, 1H, J = 10.0 Hz), 11.57 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 14.7, 34.4, 36.1, 60.6, 100.1, 112.3, 117.1, 127.8, 132.4, 133.3, 135.6, 135.8, 137.2, 142.8, 143.6, 144.2, 145.4, 150.6, 166.2, 173.3. Anal. Calcd. for C21H19NO3S: C 69.02, H 5.24, N 3.83, S 8.77; Found: C 69.13, H 5.36, N 3.98, S 8.84. 3e:Mp 138-139 ℃. IR (KBr, cm-1): ν 3483 (NH), 1692 (C5O), 1664 (C5O). 1H NMR (400 MHz, CDCl3): δ 0.94 (t, 3H, J = 3.6 Hz), 1.40-1.45 (m, 2H), 1.55 (t, 3H, J = 7.2 Hz), 1.67-1.73 (m, 2H), 2.83-2.87 (m, 2H), 4.56 (q, 2H, J = 7.2 Hz), 7.47 (s, 1H), 7.81-7.89 (m, 3H), 9.43 (d, 1H, J = 10.0 Hz), 10.22 (d, 1H, J = 10.4 Hz), 11.51 (s, 1H). 13CNMR(100 MHz, CDCl3): δ 13.8, 14.7, 22.0, 29.9, 32.2, 60.7, 100.1, 112.2, 119.2, 127.7, 132.5, 133.4, 135.5, 136.5, 136.9, 137.3, 142.1, 144.3, 146.7, 150.6, 166.4, 172.8. Anal. Calcd. for C22H21NO3S: C 69.63, H 5.58, N 3.69, S 8.45; Found: C 69.78, H 5.76, N 3.83, S 8.56. 3f:Mp 127-129 ℃. IR (KBr, cm-1): ν 3433 (NH), 1687 (C5O), 1659 (C5O). 1H NMR (400 MHz, CDCl3): δ 0.89 (t, 3H, J = 3.6 Hz), 1.36-1.38 (m, 4H), 1.53 (t, 3H, J = 6.8 Hz), 1.72-1.73 (m, 2H), 2.81-2.83 (m, 2H), 4.54 (q, 2H, J = 6.8 Hz), 7.39 (s, 1H), 7.80-7.87 (m, 3H), 9.40 (d, 1H, J = 10.0 Hz), 10.20 (d, 1H, J = 10.4 Hz), 11.54 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 14.0, 14.6, 22.4, 30.2, 30.8, 31.2, 60.7, 100.1, 112.2, 120.2, 127.8, 132.3, 133.2, 135.6, 136.4, 136.7, 137.1, 142.0, 144.1, 146.6, 150.5, 166.6, 173.3. Anal. Calcd. for C23H23NO3S: C 70.20, H 5.89, N 3.56, S, 8.15; Found: C 70.34, H 5.95, N 3.70, S, 8.29. 3g:Mp 125-127 ℃. IR (KBr, cm-1): ν 3493 (NH), 1695 (C5O), 1643 (C5O). 1H NMR (400 MHz, CDCl3): δ 0.88 (t, 3H, J = 3.6 Hz), 1.30-1.39 (m, 6H), 1.53 (t, 3H, J = 6.8 Hz), 1.69-1.73 (m, 2H), 2.81-2.85 (m, 2H), 4.55 (q, 2H, J = 6.8 Hz), 7.39 (s, 1H), 7.77-7.85 (m, 3H), 9.40 (d, 1H, J = 10.0 Hz), 10.19 (d, 1H, J = 10.4 Hz), 11.25 (s, 1H). 13CNMR(100 MHz, CDCl3): δ 9.2, 9.8, 16.7, 23.8, 25.4, 26.2, 26.6, 55.7, 96.2, 107.7, 114.3, 122.9, 127.4, 128.4, 130.6, 131.5, 131.8, 132.2, 137.0, 139.2, 141.7, 146.5, 161.2, 168.1. Anal. Calcd. for C24H25NO3S: C 70.73, H 6.18, N 3.44, S 7.87; Found: C 70.86, H 6.34, N 3.62, S 7.96. 3h:Mp 118-119 ℃. IR (KBr, cm-1): ν 3453 (NH), 1689 (C5O), 1644 (C5O). 1H NMR (400 MHz, CDCl3): δ 0.86 (t, 3H, J = 3.6 Hz), 1.22-1.37 (m, 8H), 1.53 (t, 3H, J = 6.8 Hz), 1.69-1.71 (m, 2H), 2.81-2.86 (m, 2H), 4.55 (q, 2H, J = 6.8 Hz), 7.38 (s, 1H), 7.80-7.86 (m, 3H), 9.39-9.44 (m, 1H), 10.19 (d, 1H, J = 10.4 Hz), 11.23 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 9.2, 9.8, 17.7, 24.0, 25.3, 26.3, 26.8, 55.3, 96.1, 107.3, 114.3, 123.0, 127.4, 128.4, 130.7, 131.4, 131.8, 132.2, 137.2, 139.3, 141.7, 146.7, 161.4, 168.5. Anal. Calcd. for C25H27NO3S: C 71.23, H 6.46, N 3.32, S 7.61; Found: C 71.37, H 6.63, N 3.47, S 7.76. 3i:Mp 116-117 ℃. IR (KBr, cm-1): ν 3423 (NH), 1688 (C5O), 1653 (C5O). 1H NMR (400 MHz, CDCl3): δ 0.87 (t, 3H, J = 3.6 Hz), 1.26-1.37 (m, 10H), 1.55 (3 t, H, J = 6.8 Hz), 1.69-1.70 (m, 2H), 2.82-2.84 (m, 2H), 4.55 (q, 2H, J = 6.8 Hz), 7.41 (s, 1H), 7.79-7.86 (m, 3H), 9.48-9.52 (m, 1H), 10.20 (d, 1H, J = 10.4 Hz), 11.26 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 9.2, 9.8, 17.8, 24.1, 24.4, 26.4, 26.8, 26.9, 55.7, 96.2, 107.2, 114.2, 122.8, 127.4, 129.4, 130.8, 131.5, 131.8, 132.2, 137.1, 139.2, 141.7, 146.5, 161.6, 168.4. Anal. Calcd. for C26H29NO3S: C 71.69, H 6.71, N 3.22, S 7.36; Found: C 71.83, H 6.89, N 3.35, S 7.53. 3j:Mp 115-116 ℃. IR (KBr, cm-1): ν 3429 (NH), 1684 (C5O), 1664 (C5O). 1H NMR (400 MHz, CDCl3): δ 0.85 (t, 3H, J = 6.8 Hz), 1.26-1.38 (m, 12H), 1.52 (t, 3H, J = 6.8 Hz), 1.68-1.71 (m, 2H), 2.82 (q, 2H, J = 7.6 Hz), 4.54 (q, 2H, J = 6.8 Hz), 7.37 (s, 1H), 7.76-7.85 (m, 3H), 9.37-9.42 (m, 1H), 10.19 (d, 1H, J = 9.6 Hz), 11.15 (s, 1H). 13CNMR(100 MHz, CDCl3): δ 9.2, 9.8, 17.8, 24.1, 24.4, 24.5, 24.6, 25.3, 26.3, 26.9, 55.7, 96.1, 107.2, 114.2, 121.9, 127.4, 128.3, 130.5, 131.4, 131.8, 132.2, 137.1, 139.2, 141.6, 146.5, 164.5, 168.6. Anal. Calcd. for C27H31NO3S: C 72.13, H 6.95, N 3.12, S 7.13; Found: C 72.21, H 7.14, N 3.25, S 7.21. 3k:Mp 126-127 ℃. IR (KBr, cm-1): ν 3434 (NH), 1691 (C5O), 1649 (C5O). 1H NMR (400 MHz, CDCl3): δ 1.56 (t, 3H, J = 6.8 Hz), 4.55 (q, 2H, J = 6.8 Hz), 7.28-7.30 (m, 1H), 7.36-7.40 (m, 2H), 7.60-7.62 (m, 2H), 7.77-7.81 (m, 1H), 7.86-7.22 (m, 3H), 9.40 (d, 1H, J = 10.4 Hz), 10.19-10.20 (m, 1H), 11.02 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 14.7, 60.7, 100.1, 112.2, 118.3, 125.6, 127.7, 129.0, 132.5, 133.4, 133.5, 134.1, 135.9, 136.0, 137.2, 142.0, 144.1, 147.1, 150.6, 166.2, 173.5. Anal. Calcd. for C24H17NO3S: C 72.16, H 4.29, N 3.51, S 8.03; Found: C 72.28, H 4.45, N 3.67, S 8.19. 3l:Mp 204-206 ℃. IR (KBr, cm-1): ν 3419 (NH), 1681 (C5O), 1654 (C5O). 1H NMR (400 MHz, CDCl3): δ 1.50 (t, 3H, J = 6.8 Hz), 1.75-1.89 (m, 2H), 2.71-2.83 (m, 2H), 3.23-3.31 (m, 2H), 4.53 (q, 2H, J = 6.8 Hz), 7.72-7.85 (m, 3H), 9.36 (d, 1H, J = 10.0 Hz), 10.14-10.19 (m, 1H), 11.13 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 14.6, 27.4, 29.1, 31.0, 59.6, 103.1, 107.3, 114.5, 122.7, 127.9, 128.5, 130.4, 131.0, 131.4, 132.1, 137.6, 140.2, 141.3, 146.0, 164.7, 168.1. Anal. Calcd. for C21H17NO3S: C 69.40, H 4.71, N 3.85, S 8.82; Found: C 69.56, H 4.82, N 3.96, S 8.98. 3m: Mp 213-215 ℃. IR (KBr, cm-1): ν 3416 (NH), 1685 (C5O), 1658 (C5O). 1H NMR (400 MHz, CDCl3): δ 1.51 (t, 3H, J = 6.8 Hz), 1.80-1.92 (m, 4H), 2.74-2.81 (m, 2H), 3.25-3.34 (m, 2H), 4.52 (q, 2H, J = 6.8 Hz), 7.71-7.82 (m, 3H), 9.34 (d, 1H, J = 10.0 Hz), 10.17-10.20 (m, 1H), 11.10 (s, 1H). 13CNMR(100 MHz, CDCl3): δ 14.7, 23.0, 23.4, 24.7, 27.1, 59.7, 105.1, 108.2, 113.8, 122.1, 127.6, 128.6, 130.2, 131.6, 132.0, 132.6, 137.6, 140.2, 141.7, 146.8, 165.4, 168.3. Anal. Calcd. for C22H19NO3S: C 70.00, H 5.07, N 3.71, S 8.50; Found: C 70.17, H 5.14, N 3.85, S 8.65.
-
[1]
-
-
-
[1]
Bo Yu , Pengchen Du , Jianwen Guo , Hanshen Xin , Jianhua Zhang . Nonalternant isomer of pentacene fusing two azulene units. Chinese Chemical Letters, 2024, 35(5): 109321-. doi: 10.1016/j.cclet.2023.109321
-
[2]
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
-
[3]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
-
[4]
Tiantian Long , Hongmei Luo , Jingbo Sun , Fengniu Lu , Yi Chen , Dong Xu , Zhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728
-
[5]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[6]
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
-
[7]
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
-
[8]
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
-
[9]
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
-
[10]
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
-
[11]
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
-
[12]
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
-
[13]
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
-
[14]
Yan Guo , Hongtao Bian , Le Yu , Jiani Ma , Yu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971
-
[15]
Xuan Liu , Qing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670
-
[16]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[17]
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
-
[18]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[19]
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
-
[20]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(595)
- HTML views(6)