Citation: Farzaneh Dehghani, Ali Reza Sardarian, Mohammad Mehdi Doroodmand. An efficient method for synthesis of acylals from aldehydes using multi-walled carbon nanotubes functionalized with phosphonic acid (MWCNTs-C-PO3H2)[J]. Chinese Chemical Letters, ;2014, 25(12): 1630-1634. doi: 10.1016/j.cclet.2014.07.005 shu

An efficient method for synthesis of acylals from aldehydes using multi-walled carbon nanotubes functionalized with phosphonic acid (MWCNTs-C-PO3H2)

  • Corresponding author: Ali Reza Sardarian, 
  • Received Date: 11 February 2014
    Available Online: 17 June 2014

  • MWCNTs-C-PO3H2 has been used as an efficient, heterogeneous and reusable nanocatalyst for synthesis of acylals from aldehydes under solvent-free conditions at room temperature. A wide range of aldehydes was studied and corresponding products were obtained in good to excellent yields in short reaction times. Nanocatalyst can be easily recovered by centrifuge and reused for subsequent reactions for at least five times without deterioration in catalytic activity. The major advantages of the present method are high yields, short reaction time, recyclable catalyst and solvent-free reaction conditions at room temperature.
  • 加载中
    1. [1]

      [1] T.W. Green, P.G.M. Wuts, Protective Groups in Organic Synthesis, 3rd ed., Wiley, New York, 1999.

    2. [2]

      [2] (a) D.J. Kalita, R. Borah, J.C. Sarma, A new selective catalytic acetalization method promoted by microwave irradiation, Tetrahedron Lett. 39 (1998) 4573-4574; (b) R. Balini, G. Bosica, B. Frulanti, et al., 1,3-Dioxolanes from carbonyl compounds over zeolite HSZ-360 as a reusable, heterogeneous catalyst, Tetrahedron Lett. 39 (1998) 1615-1618.

    3. [3]

      [3] J.G. Frick Jr., J.R. Harper Jr., Acetals as crosslinking reagents for cotton, J. Appl. Polym. Sci. 29 (1984) 1433-1447.

    4. [4]

      [4] H. Held, A. Rengstle, D. Mayer, W. Gerhartz, Ullman's Encyclopedia of Industrial Chemistry, 5th ed., VCH, New York, 1985, p. 68.

    5. [5]

      [5] C.D. Wang, M.H. Li, A novel and efficient conversion of aldehydes to 1,1-diacetates catalyzed with FeCl3/SiO2 under microwave irradiation, Synth. Commun. 32 (2002) 3469-3473.

    6. [6]

      [6] K.L. Chandra, P. Saravanan, V.K. Singh, An efficient method for diacetylation of aldehydes, Synlett 3 (2000) 359-360.

    7. [7]

      [7] M.D. Carrigan, K.J. Eash, M.C. Oswald, et al., An efficient method for the chemoselective synthesis of acylals from aromatic aldehydes using bismuth triflate, Tetrahedron Lett. 42 (2001) 8133-8135.

    8. [8]

      [8] X.Y. Zhang, L.J. Li, G.S. Zhang, An efficient and green procedure for the preparation of acylals from aldehydes catalyzed by Fe2(SO4)3·xH2O, Green Chem. 5 (2003) 646-648.

    9. [9]

      [9] B. Karimi, H. Seradj, G.R. Ebrahimian, Mild and efficient conversion of aldehydes to 1,1-diacetates catalyzed with N-bromosuccinimide (NBS), Synlett 5 (2000) 623-624.

    10. [10]

      [10] Z.H. Zhang, T.S. Li, C.G. Fu, Montmorillonite clay catalysis. Part 4.1 an efficient and convenient procedure for preparation of 1,1-diacetates from aldehydes, J. Chem. Res. Synop. 5 (1997) 174-175.

    11. [11]

      [11] R. Ballini, M. Bordoni, G. Bosica, et al., Solvent free synthesis and deprotection of 1,1-diacetates over a commercially available zeolite Y as a reusable catalyst, Tetrahedron Lett. 39 (1998) 7587-7590.

    12. [12]

      [12] G.P. Romanelli, H.J. Thomas, G.T. Baronetti, et al., Solvent-free catalytic preparation of 1,1-diacetates from aldehydes using a Wells-Dawson acid (H6P2W18O62·24H2O), Tetrahedron Lett. 44 (2003) 1301-1303.

    13. [13]

      [13] F. Freeman, E.M. Karchetski, Preparation and spectral properties of benzylidene diacetates, J. Chem. Eng. Data 22 (1997) 355-357.

    14. [14]

      [14] B.M. Reddy, P.M. Sreekanth, A. Kahn, Facile synthesis of 1,1-diacetates from aldehydes using environmentally benign solid acid catalyst under solvent-free conditions, Synth. Commun. 34 (2004) 1839-1845.

    15. [15]

      [15] U.V. Desai, T.S. Thopate, D.M. Pore, P.P. Wadgaonkar, An efficient, solvent-free method for the chemoselective synthesis of acylals from aldehydes and their deprotection catalyzed by silica sulfuric acid as a reusable solid acid catalyst, Catal. Commun. 7 (2006) 508-511.

    16. [16]

      [16] A.R. Hajipour, A. Zareib, A.E. Ruohoa, P2O5/Al2O3 as an efficient heterogeneous catalyst for chemoselective synthesis of 1,1-diacetates under solvent-free conditions, Tetrahedron Lett. 48 (2007) 2881-2884.

    17. [17]

      [17] K. Niknam, D. Saberi, M.N. Sefat, Silica-bonded S-sulfonic acid as a recyclable catalyst for chemoselective synthesis of 1,1-diacetates, Tetrahedron Lett. 50 (2009) 4058-4062.

    18. [18]

      [18] J. Kalbasi, A.R. Massah, A. Shafiei, Synthesis and characterization of BEA-SO3H as an efficient and chemoselective acid catalyst, J. Mol. Catal. A: Chem. 335 (2011) 51-59.

    19. [19]

      [19] M. Esmaeilpour, A.R. Sardarian, J. Javidi, Schiff base complex of metal ions supported on superparamagnetic Fe3O4@SiO2 nanoparticles: an efficient, selective and recyclable catalyst for synthesis of 1,1-diacetates from aldehydes under solvent-free conditions, Appl. Catal. A: Gen. 445-446 (2012) 359-367.

    20. [20]

      [20] M. Nouri Sefat, A. Deris, K. Niknam, Preparation of silica-bonded propyl-diethylene-triamine-N-sulfamic acid as a recyclable catalyst for chemoselective synthesis of 1,1-diacetates, Chin. J. Chem. 29 (2011) 2361-2367.

    21. [21]

      [21] F. Shirini, M. Mamaghani, M. Seddighi, Sulfonated rice husk ash (RHA-SO3H): a highly powerful and efficient solid acid catalyst for the chemoselective preparation and deprotection of 1,1-diacetates, Catal. Commun. 36 (2013) 31-37.

    22. [22]

      [22] D. Choudhary, S. Paul, R. Gupta, J.H. Clark, Catalytic properties of several palladium complexes covalently anchored onto silica for the aerobic oxidation of alcohols, Green Chem. 8 (2006) 479-482.

    23. [23]

      [23] J.M. Riego, Z. Sedin, J.M. Zaldivar, N.C. Marziano, C. Tortato, Sulfuric acid on silicagel: an inexpensive catalyst for aromatic nitration, Tetrahedron Lett. 37 (1996) 513-516.

    24. [24]

      [24] A. Corma, H. Garcia, Lewis acids as catalysts in oxidation reactions: from homogeneous to heterogeneous systems, Chem. Rev. 102 (2002) 3837-3892.

    25. [25]

      [25] B. Karimi, M. Khalkhali, Solid silica-based sulfonic acid as an efficient and recoverable interphase catalyst for selective tetrahydropyranylation of alcohols and phenols, J. Mol. Catal. A: Chem. 232 (2005) 113-117.

    26. [26]

      [26] B. Karimi, D. Zareyee, A high loading sulfonic acid-functionalized ordered nanoporous silica as an efficient and recyclable catalyst for chemoselective deprotection of tert-butyldimethylsilyl ethers, Tetrahedron Lett. 46 (2005) 4661-4665.

    27. [27]

      [27] J.A. Melero, R. Van Grieken, G. Morales, A high loading sulfonic acid-functionalized ordered nanoporous silica as an efficient and recyclable catalyst for chemoselective deprotection of tert-butyldimethylsilyl ethers, Chem. Rev. 106 (2006) 3790-3812.

    28. [28]

      [28] B. Karimi, S. Abedi, J.H. Clark, V. Budarin, Highly efficient aerobic oxidation of alcohols using a recoverable catalyst: the role of mesoporous channels of SBA-15 in stabilizing palladium nanoparticles, Angew. Chem. Int. Ed. 45 (2006) 4776-4779.

    29. [29]

      [29] P. Serp, E. Castillejos, Catalysis in carbon nanotubes, ChemCatChem 2 (2010) 41-47.

    30. [30]

      [30] F. Dehghani, A.R. Sardarian, M.M. Doroodmand, Preparation and characterization of multi-walled carbon nanotubes (MWCNTs), functionalized with phosphonic acid (MWCNTs-C-PO3H2) and its application as a novel, efficient, heterogeneous, highly selective and reusable catalyst for acetylation of alcohols, phenols, aromatic amines, and thiols, J. Iran. Chem. Soc. 11 (2014) 673-677.

    31. [31]

      [31] A.T. Khan, L.H. Choudhury, S. Ghosh, Silica supported perchloric acid (HClO4-SiO2): A highly efficient and reusable catalyst for geminal diacylation of aldehydes under solvent-free conditions, J. Mol. Catal. A: Chem. 255 (2006) 230-235.

  • 加载中
    1. [1]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    2. [2]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    3. [3]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    4. [4]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    5. [5]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    6. [6]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    7. [7]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    8. [8]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    9. [9]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    10. [10]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    11. [11]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    12. [12]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    13. [13]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    14. [14]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    15. [15]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    16. [16]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    17. [17]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    18. [18]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    19. [19]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    20. [20]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

Metrics
  • PDF Downloads(0)
  • Abstract views(559)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return