Citation: Qi Shen, Ying-Ju Fan, Wei-Min Zhang, Bo-Li Zhu, Ru Wang, Zhong-Xi Sun. Two-dimensional correlation analysis of continuous online in situ ATR-FTIR on the adsorption of butyl xanthate at the surface of a-PbO[J]. Chinese Chemical Letters, ;2015, 26(2): 193-196. doi: 10.1016/j.cclet.2014.07.003 shu

Two-dimensional correlation analysis of continuous online in situ ATR-FTIR on the adsorption of butyl xanthate at the surface of a-PbO

  • Corresponding author: Zhong-Xi Sun, 
  • Received Date: 15 May 2014
    Available Online: 1 July 2014

    Fund Project: This work was supported by the National Nature Science Foundation of China (Nos. 51274104, 50874052) (Nos. 51274104, 50874052)National Key Basic Research Program of China (973, No. 2011CB933700). (973, No. 2011CB933700)

  • The adsorption behavior of butyl xanthate on the surface of lead oxide was investigated using continuous online in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy technique and two dimensional (2D) correlation analysis. The adsorbed layer studied was prepared by coating α-PbO particles onto the surfaces of the ZnSe crystal. The appearance of spectral peaks at 1203 cm-1, 1033 cm-1 and their red shift indicated the formation and aggregation of xanthate at the surface of α-PbO. According to IR intensity changes after rinsing with deionized water and a NaOH solution, the adsorption was proved to be a chemisorption type. The competition between xanthate and OH- for the surfaces leads to desorption of xanthate at higher pH. The technique of 2D correlation ATR-FTIR spectroscopy was used to evaluate the changing order of spectral intensities in the adsorption process, and the results indicated that xanthate micelles were formed at the surfaces. The adsorption kinetics of butyl xanthate was found to be a pseudo-second-order reaction model and the adsorption capacity of butyl xanthate at a-PbO was as high as 281 mg g-1 after 150 min.
  • 加载中
    1. [1]

      [1] B. Bag, B. Das, B.K. Mishra, Geometrical optimization of xanthate collectors with copper ions and their response to flotation, Miner. Eng. 24 (2011) 760-765.

    2. [2]

      [2] P.H. Fu, S. Ewen, D.G. Senior, Spectroscopic characterization of ethyl xanthate oxidation products and analysis by ion interaction chromatography, Anal. Chem. 72 (2000) 4836-4845.

    3. [3]

      [3] S.R. Rao, J.A. Finch, Base metal oxide flotation using long chain xanthates, Miner. Process. 69 (2003) 251-258.

    4. [4]

      [4] S.K. Pasha, V.S.V. Satyanarayana, A. Sivakumar, K. Chidambaram, L.J. Kennedy, Catalytic applications of nano b-PbO in Paal-Knorr reaction, Chin. Chem. Lett. 22 (2011) 891-894.

    5. [5]

      [5] P. Veluchamy, M. Sharon, M. Shimizu, H. Minoura, Electrosynthesis of lead oxide film on a lead electrode in alkaline solution by a potentiodynamic method: Its characterization and photoelectrochemical properties, Electroanal. Chem. 371 (1994) 205-217.

    6. [6]

      [6] J. Mielczarski, In situ ATR-IR spectroscopic study of xanthate adsorption on marcasite, Colloids Surf. 17 (1986) 251-271.

    7. [7]

      [7] P. Roonasi, A. Holmgren, An ATR-FTIR study of sulphate sorption on magnetite; rate of adsorption, surface speciation, and effect of calcium ions, Colloid Interface Sci. 333 (2009) 27-32.

    8. [8]

      [8] A. Fredriksson, A. Holmgren, An in situ ATR-FTIR investigation of adsorption and orientation of heptyl xanthate at the lead sulphide/aqueous solution interface, Miner. Eng. 21 (2008) 1000-1004.

    9. [9]

      [9] I. Noda, A.E. Dowrey, C. Marcott, Recent developments in two-dimensional infrared (2D IR) correlation spectroscopy, Appl. Spectrosc. 47 (1993) 1317-1323.

    10. [10]

      [10] I. Noda, Two-dimensional infrared-spectroscopy, J. Am. Chem. Soc. 111 (1989) 8116-8118.

    11. [11]

      [11] I. Noda, Two-dimensional infrared (2D IR) spectroscopy: theory and applications, Appl. Spectrosc. 44 (1990) 550-561.

    12. [12]

      [12] D.L. Elmore, R.A. Dluhy, Application of 2D IR correlation analysis to phase transitions in Langmuir monolayer films, Colloids Surf. A 171 (2000) 225-239.

    13. [13]

      [13] K. Noren, P. Persson, Adsorption of monocarboxylates at the water/goethite interface: the importance of hydrogen bonding, Geochim. Cosmochim. Acta 71 (2007) 5717-5730.

    14. [14]

      [14] A.A. Simanova, J.S. Loring, P. Persson, Formation of ternary metal-oxalate surface complexes on a-FeOOH particles, J. Phys. Chem. C 115 (2011) 21191-21198.

    15. [15]

      [15] S. Rao, Xanthate and Related Compounds, Marcel Dekker, Inc., New York, 1971.

    16. [16]

      [16] I. Noda, Y. Ozaki, Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy, John Wiley & Sons, Chichester, England, 2004.

    17. [17]

      [17] Y. Shen, P.Y. Wu, Two-dimensional ATR-FTIR spectroscopic investigation on water diffusion in polypropylene fime: water bending vibration, J. Phys. Chem. B 107 (2003) 4224-4226.

    18. [18]

      [18] P. Hellstroöm, S. Ö berg, A. Fredriksson, et al., A theoretical and experimental study of vibrational properties of alkyl xanthates, Spectroch. Acta Part A 65 (2006) 887-895.

    19. [19]

      [19] W.H. Jang, J.D. Miller, Verification of the internal reflection spectroscopy adsorption density equation by Fourier transform infrared spectroscopy analysis of transferred Langmuir-Blodgett films, Langmuir 9 (1993) 3159-3165.

    20. [20]

      [20] R. Woods, G.A. Hope, G.M. Brown, Spectroelectrochemical investigations of the interaction of ethyl xanthate with copper, silver and gold: II. SERS of xanthate adsorbed on silver and copper surfaces, Colloids Surf. A 137 (1998) 329-337.

    21. [21]

      [21] J.O. Leppinen, C.I. Basilio, R.H. Yoon, In-situ FTIR study of ethyl xanthate adsorption on sulfide minerals under conditions of controlled potential, Int. J. Miner. Process. 26 (1989) 259-274.

    22. [22]

      [22] M.L. Larsson, A. Holmgren, W. Forsling, Xanthate adsorbed on ZnS studied by polarized FTIR-ATR spectroscopy, Langmuir 16 (2000) 8129-8133.

    23. [23]

      [23] Q. Shen, Y.J. Fan, L. Yin, Z.X. Sun, Two-dimensional continuous online in situ ATR-FTIR spectroscopyic investigation of adsorption of butyl xanthate on CuO surfaces, Acta Phys. Chim. Sin. 30 (2014) 359-364.

  • 加载中
    1. [1]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

    2. [2]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    3. [3]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    4. [4]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    5. [5]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    6. [6]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    7. [7]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    8. [8]

      Xi Zhou Shengyao Wang . Dynamic two-dimensional covalent organic frameworks via ‘wine rack' design. Chinese Journal of Structural Chemistry, 2025, 44(4): 100464-100464. doi: 10.1016/j.cjsc.2024.100464

    9. [9]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    10. [10]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    11. [11]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    12. [12]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    13. [13]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    14. [14]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    15. [15]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    16. [16]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    17. [17]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    18. [18]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    19. [19]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    20. [20]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

Metrics
  • PDF Downloads(0)
  • Abstract views(625)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return