Citation:
Mei Li, Min Shao, Ling-Yu Li, Si-Hua Lu, Wen-Tai Chen, Chen Wang. Quantifying the ambient formaldehyde sources utilizing tracers[J]. Chinese Chemical Letters,
;2014, 25(11): 1489-1491.
doi:
10.1016/j.cclet.2014.07.001
-
Formaldehyde (HCHO) is one of the most important intermediate products of atmospheric photochemical reactions in the troposphere, therefore understanding of HCHO sources is essential for effective ozone control measures. The objective of this work is to distinguish between primary and secondary sources of HCHO. Based on about one month of online measurements in winter in Ziyang, Sichuan, the multi-linear regression analysis of ambient concentrations of HCHO and possible tracers (acetonitrile, propane and peroxyacetyl nitrate) was performed. The results show that during winter in Ziyang, biomass burning contributed an average of 53.2% to ambient HCHO levels, while secondary processes contributed about 30.1%, and vehicular sources accounted for 7.1%.
-
Keywords:
- Formaldehyde,
- Sources,
- Tracers,
- Multi-linear regression
-
-
-
[1]
[1] M. Possanzini, V. Dipalo, A. Cecinato, Evaluation of lower carbonyls and photochemical oxidants by HPLC-UV and HRGC-MS, Atmos. Environ. 37 (2003) 1309- 1316.
-
[2]
[2] P.B. Shepson, D.R. Hastie, H.I. Schiff, et al., Atmospheric concentrations and temporal variations of C1-C3 carbonyl compounds at two rural sites in central Ontario, Atmos. Environ. A 25 (1991) 2001-2015.
-
[3]
[3] M. Possanzini, V.D. Palo, A. Cecinato, Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air, Atmos. Environ. 36 (2002) 3195- 3201.
-
[4]
[4] Y.C. Lin, J.J. Schwab, K.L. Demerjian, Summertime formaldehyde observations in New York city: ambient levels, sources and its contribution to HOx radicals, J. Geophys. Res. 117 (2012) D08305.
-
[5]
[5] S. Friedfeld, M. Fraser, K. Ensor, et al., Statistical analysis of primary and secondary atmospheric formaldehyde, J. Atmos. Environ. 36 (2002) 4767-4775.
-
[6]
[6] Y. Li, M. Shao, S.H. Lu, C.C. Chang, P.K. Dasgupta, Variations and sources of ambient formaldehyde for the 2008 Beijing Olympic Games, J. Atmos. Environ. 44 (2010) 2632-2639.
-
[7]
[7] J.A. de Gouw, A.M. Middlebrook, C. Warneke, et al., Budget of organic carbon in a polluted atmosphere: results from the New England Air Quality Study in 2002, J. Geophys. Res. Atmos. 110 (2005) D16.
-
[8]
[8] B. Yuan, M. Shao, J. de Gouw, D.D. Parrish, et al., Volatile organic compounds (VOCs) in urban air: how chemistry affects the interpretation of positive matrix factorization (PMF) analysis, J. Geophys. Res. 117 (2012) D24302.
-
[9]
[9] P. Paatero, U. Tapper, Positive matrix factorization: a non-negative factor model with optimal utilization of error-estimates of data values, Environmetrics 5 (1994) 111-126.
-
[10]
[10] B. Buzcu Guven, E.P. Olaguer, Ambient formaldehyde source attribution in Houston during TexAQSⅡ and TRAMP, Atmos. Environ. 45 (2011) 4272-4280.
-
[11]
[11] J.Z. Li, P.K. Dasgupta, W. Luke, Measurement of gaseous and aqueous trace formaldehyde: revisiting the pentanedione reaction and field applications, Anal. Chim. Acta 531 (2005) 51-68.
-
[12]
[12] Q. Wang, Variations and Sources Apportionment of Ambient Carbonyl Compounds, Master Thesis, Peking University, 2011.
-
[13]
[13] Y.J. Zhang, Y.J. Mu, J.F. Liu, A. Mellouki, Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China, J. Environ. Sci. 24 (2012) 124-130.
-
[14]
[14] X.B. Pang, Y.J. Mu, Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air, Atmos. Environ. 40 (2006) 6313-6320.
-
[15]
[15] H. Lü , Q.Y. Cai, S. Wen, Y. Chi, S. Guo, Seasonal and diurnal variations of carbonyl compounds in the urban atmosphere, Sci. Total. Environ. 408 (2010) 3523-3529.
-
[16]
[16] J. Huang, Y.L. Feng, J. Li, et al., Characteristics of carbonyl compounds in ambient air of Shanghai, China, J. Atmos. Chem. 61 (2008) 1-20.
-
[17]
[17] S.G. Moussa, M. El-Fadel, N.A. Saliba, Seasonal, diurnal and nocturnal behaviors of lower carbonyl compounds in the urban environment of Beirut, Lebanon, Atmos. Environ. 40 (2006) 2459-2468.
-
[18]
[18] B. Rappenglü ck, P.K. Dasgupta, M. Leuchner, Q. Li, Formaldehyde and its relation to CO, PAN, and SO2 in the Houston-Galveston airshed, Atmos. Chem. Phys. 10 (2010) 2413-2424.
-
[19]
[19] R.J. Weber, A.P. Sullivan, R.E. Peltier, et al., A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States, J. Geophys. Res. 112 (2007) D13302.
-
[20]
[20] A.R. Garcia, R. Volkamer, L.T. Molina, M.J. Molina, Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers, Atmos. Chem. Phys. 6 (2006) 4545-4557.
-
[21]
[21] J.A. de Gouw, C. Warneke, D.D. Parrish, et al., Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere, J. Geophys. Res. 108 (2003) D11.
-
[1]
-
-
-
[1]
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
-
[2]
Changzhu Huang , Wei Dai , Shimao Deng , Yixin Tian , Xiaolin Liu , Jia Lin , Hong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429
-
[3]
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
-
[4]
Tao Ban , Xi-Yang Yu , Hai-Kuo Tian , Zheng-Qing Huang , Chun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549
-
[5]
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
-
[6]
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
-
[7]
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
-
[8]
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
-
[9]
Huaran Zhang , Yuting Huang , Yingjie Tang , Dekun Kong , Yi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968
-
[10]
Wenyu Gao , Liming Zhang , Chuang Zhao , Lixiang Liu , Xingran Yang , Jinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447
-
[11]
Bohan Zhang , Bingzhe Wang , Guichuan Xing , Zikang Tang , Songnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358
-
[12]
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
-
[13]
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
-
[14]
Liping Zhao , Xixi Guo , Zhimeng Zhang , Xi Lu , Qingxuan Zeng , Tianyun Fan , Xintong Zhang , Fenbei Chen , Mengyi Xu , Min Yuan , Zhenjun Li , Jiandong Jiang , Jing Pang , Xuefu You , Yanxiang Wang , Danqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506
-
[15]
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
-
[16]
Zhao-Bo Hu , Ling-Ao Gui , Long-He Li , Tong-Tong Xiao , Adam T. Hand , Pagnareach Tin , Mykhaylo Ozerov , Yan Peng , Zhongwen Ouyang , Zhenxing Wang , Zi-Ling Xue , You Song . CoⅡ single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600
-
[17]
Jing REN , Ruikui YAN , Xiaoli CHEN , Huali CUI , Hua YANG , Jijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287
-
[18]
Mao-Fan Li , Ming‐Yu Guo , De-Xuan Liu , Xiao-Xian Chen , Wei-Jian Xu , Wei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507
-
[19]
Yunjie Dang , Yanru Feng , Xiao Chen , Chaoxing He , Shujie Wei , Dingyang Liu , Jinlong Qi , Huaxing Zhang , Shaokun Yang , Zhiyun Niu , Bai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660
-
[20]
Qiyan Wu , Qing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(731)
- HTML views(4)