Citation: Mei Li, Min Shao, Ling-Yu Li, Si-Hua Lu, Wen-Tai Chen, Chen Wang. Quantifying the ambient formaldehyde sources utilizing tracers[J]. Chinese Chemical Letters, ;2014, 25(11): 1489-1491. doi: 10.1016/j.cclet.2014.07.001 shu

Quantifying the ambient formaldehyde sources utilizing tracers

  • Corresponding author: Mei Li,  Min Shao, 
  • Received Date: 18 March 2014
    Available Online: 19 June 2014

  • Formaldehyde (HCHO) is one of the most important intermediate products of atmospheric photochemical reactions in the troposphere, therefore understanding of HCHO sources is essential for effective ozone control measures. The objective of this work is to distinguish between primary and secondary sources of HCHO. Based on about one month of online measurements in winter in Ziyang, Sichuan, the multi-linear regression analysis of ambient concentrations of HCHO and possible tracers (acetonitrile, propane and peroxyacetyl nitrate) was performed. The results show that during winter in Ziyang, biomass burning contributed an average of 53.2% to ambient HCHO levels, while secondary processes contributed about 30.1%, and vehicular sources accounted for 7.1%.
  • 加载中
    1. [1]

      [1] M. Possanzini, V. Dipalo, A. Cecinato, Evaluation of lower carbonyls and photochemical oxidants by HPLC-UV and HRGC-MS, Atmos. Environ. 37 (2003) 1309- 1316.

    2. [2]

      [2] P.B. Shepson, D.R. Hastie, H.I. Schiff, et al., Atmospheric concentrations and temporal variations of C1-C3 carbonyl compounds at two rural sites in central Ontario, Atmos. Environ. A 25 (1991) 2001-2015.

    3. [3]

      [3] M. Possanzini, V.D. Palo, A. Cecinato, Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air, Atmos. Environ. 36 (2002) 3195- 3201.

    4. [4]

      [4] Y.C. Lin, J.J. Schwab, K.L. Demerjian, Summertime formaldehyde observations in New York city: ambient levels, sources and its contribution to HOx radicals, J. Geophys. Res. 117 (2012) D08305.

    5. [5]

      [5] S. Friedfeld, M. Fraser, K. Ensor, et al., Statistical analysis of primary and secondary atmospheric formaldehyde, J. Atmos. Environ. 36 (2002) 4767-4775.

    6. [6]

      [6] Y. Li, M. Shao, S.H. Lu, C.C. Chang, P.K. Dasgupta, Variations and sources of ambient formaldehyde for the 2008 Beijing Olympic Games, J. Atmos. Environ. 44 (2010) 2632-2639.

    7. [7]

      [7] J.A. de Gouw, A.M. Middlebrook, C. Warneke, et al., Budget of organic carbon in a polluted atmosphere: results from the New England Air Quality Study in 2002, J. Geophys. Res. Atmos. 110 (2005) D16.

    8. [8]

      [8] B. Yuan, M. Shao, J. de Gouw, D.D. Parrish, et al., Volatile organic compounds (VOCs) in urban air: how chemistry affects the interpretation of positive matrix factorization (PMF) analysis, J. Geophys. Res. 117 (2012) D24302.

    9. [9]

      [9] P. Paatero, U. Tapper, Positive matrix factorization: a non-negative factor model with optimal utilization of error-estimates of data values, Environmetrics 5 (1994) 111-126.

    10. [10]

      [10] B. Buzcu Guven, E.P. Olaguer, Ambient formaldehyde source attribution in Houston during TexAQSⅡ and TRAMP, Atmos. Environ. 45 (2011) 4272-4280.

    11. [11]

      [11] J.Z. Li, P.K. Dasgupta, W. Luke, Measurement of gaseous and aqueous trace formaldehyde: revisiting the pentanedione reaction and field applications, Anal. Chim. Acta 531 (2005) 51-68.

    12. [12]

      [12] Q. Wang, Variations and Sources Apportionment of Ambient Carbonyl Compounds, Master Thesis, Peking University, 2011.

    13. [13]

      [13] Y.J. Zhang, Y.J. Mu, J.F. Liu, A. Mellouki, Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China, J. Environ. Sci. 24 (2012) 124-130.

    14. [14]

      [14] X.B. Pang, Y.J. Mu, Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air, Atmos. Environ. 40 (2006) 6313-6320.

    15. [15]

      [15] H. Lü , Q.Y. Cai, S. Wen, Y. Chi, S. Guo, Seasonal and diurnal variations of carbonyl compounds in the urban atmosphere, Sci. Total. Environ. 408 (2010) 3523-3529.

    16. [16]

      [16] J. Huang, Y.L. Feng, J. Li, et al., Characteristics of carbonyl compounds in ambient air of Shanghai, China, J. Atmos. Chem. 61 (2008) 1-20.

    17. [17]

      [17] S.G. Moussa, M. El-Fadel, N.A. Saliba, Seasonal, diurnal and nocturnal behaviors of lower carbonyl compounds in the urban environment of Beirut, Lebanon, Atmos. Environ. 40 (2006) 2459-2468.

    18. [18]

      [18] B. Rappenglü ck, P.K. Dasgupta, M. Leuchner, Q. Li, Formaldehyde and its relation to CO, PAN, and SO2 in the Houston-Galveston airshed, Atmos. Chem. Phys. 10 (2010) 2413-2424.

    19. [19]

      [19] R.J. Weber, A.P. Sullivan, R.E. Peltier, et al., A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States, J. Geophys. Res. 112 (2007) D13302.

    20. [20]

      [20] A.R. Garcia, R. Volkamer, L.T. Molina, M.J. Molina, Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers, Atmos. Chem. Phys. 6 (2006) 4545-4557.

    21. [21]

      [21] J.A. de Gouw, C. Warneke, D.D. Parrish, et al., Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere, J. Geophys. Res. 108 (2003) D11.

  • 加载中
    1. [1]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    2. [2]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    3. [3]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    4. [4]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    5. [5]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    6. [6]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    7. [7]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Huaran ZhangYuting HuangYingjie TangDekun KongYi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968

    10. [10]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    11. [11]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    12. [12]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    13. [13]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    14. [14]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    15. [15]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    16. [16]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    17. [17]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    18. [18]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    19. [19]

      Yunjie DangYanru FengXiao ChenChaoxing HeShujie WeiDingyang LiuJinlong QiHuaxing ZhangShaokun YangZhiyun NiuBai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660

    20. [20]

      Qiyan WuQing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384

Metrics
  • PDF Downloads(0)
  • Abstract views(731)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return