Citation:
Xia Yang, Ya-Jun Zhou, Pei He, Yun-Hua Guo, Cong-Jun Liu, Ke-Wu Yang. Activation free energy of Zn(Ⅱ), Co(Ⅱ) binding to metallo-β-lactamase ImiS[J]. Chinese Chemical Letters,
;2014, 25(10): 1323-1326.
doi:
10.1016/j.cclet.2014.06.024
-
In an effort to understand the recombination of a B2 metallo-β-lactamase (MβL), the binding of metals to apo-ImiS was studied by isothermal titration calorimetry and fluorescence spectra. The binding of Zn(Ⅱ), Co(Ⅱ) to apo-ImiS resulted in activation free energies ΔG≠6 values of 93.719 and 92.948 kJ mol-1, respectively, and increasing of fluorescence intensity at maxima emission of 340 nm.
-
-
-
[1]
[1] Z.G. Wang, W. Fast, A.M. Valentine, S.J. Benkovic, Metallo-b-lactamase: structure and mechanism, Curr. Opin. Chem. Biol. 3 (1999) 614-622.
-
[2]
[2] M.W. Crowder, J. Spencer, A.J. Vila, Metallo-b-lactamases: novel weaponry for antibiotic resistance in bacteria, Acc. Chem. Res. 39 (2006) 721-728.
-
[3]
[3] T.R. Walsh, M.A. Toleman, L. Poirel, P. Nordmann, Metallo-b-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18 (2005) 306-325.
-
[4]
[4] K. Bush, G.A. Jacoby, Updated functional classification of b-lactamases, Antimicrob. Agents Chemother. 54 (2010) 969-976.
-
[5]
[5] J.H. Toney, J.G. Moloughney, Metallo-beta-lactamase inhibitors: promise for the future? Curr. Opin. Invest. Drugs 5 (2004) 823-826.
-
[6]
[6] C. Bebrone, Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily, Biochem. Pharmacol. 74 (2007) 1686-1701.
-
[7]
[7] K.M. Papp-Wallace, A. Endimiani, M.A. Taracila, R.A. Bonomo, Carbapenems: past, present, and future, Antimicrob. Agents Chemother. 55 (2011) 4943-4960.
-
[8]
[8] M.H. Valladares, A. Felici, G. Weber, et al., Zn(Ⅱ) dependence of the Aeromonas hydrophila AE036 metallo-β-lactamases activity and stability, Biochemistry 36 (1997) 11534-11541.
-
[9]
[9] N.O. Concha, B.A. Rasmussen, K. Bush, O. Herzberg, Crystal structure of the widespectrum binuclear zinc beta-lactamase from Bacteroides fragilis, Structure 4 (1996) 823-836.
-
[10]
[10] N. Sharma, Z.X. Hu, M.W. Crowder, B. Bennett, Conformational changes in the metallo-β-lactamases ImiS during the catalytic reaction: an EPR spectro-kinetic study of Co(Ⅱ)-spin label interactions, J. Am. Chem. Soc. 130 (2008) 8215-8222.
-
[11]
[11] A.L. Costello, N.P. Sharma, K.W. Yang, M.W. Crowder, D.L. Tierney, X-ray absorption spectroscopy of the zinc-binding sites in the class B2 metallo-β-lactamases ImiS from Aeromonas veronii bv. sobria, Biochemistry 45 (2006) 13650-13658.
-
[12]
[12] N.P. Sharma, C. Hajdin, S. Chandrasekar, et al., Mechanistic studies on the mononuclear Zn(Ⅱ)-containing metallo-β-lactamases ImiS from Aeromonas sobria, Biochemistry 45 (2006) 10729-10738.
-
[13]
[13] P.A. Crawford, K.W. Yang, N. Sharma, B. Bennett, M.W. Crowder, Spectroscopic studies on Co(Ⅱ)-substituted metallo-β-lactamases ImiS from Aeromonas veronii bv. sobria, Biochemistry 44 (2005) 5168-5176.
-
[14]
[14] L. Feng, K.W. Yang, L.S. Zhou, et al., N-heterocyclic dicarboxylic acids: broadspectrum inhibitors of metallo-β-lactamasess with Co-antibacterial effect against antibiotic-resistant bacteria, Bioorg. Med. Chem. Lett. 22 (2012) 5185-5189.
-
[15]
[15] P.A. Crawford, N. Sharma, S. Chandrasekar, et al., Over-expression, purification, and characterization of metallo-β-lactamases ImiS from Aeromonas veronii bv. Sobria, Protein Expr. Purif. 36 (2004) 272-279.
-
[16]
[16] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248-254.
-
[17]
[17] K.W. Yang, M.W. Crowder, A method for removing ethylenediaminetetraacetic acid from apo-ImiS, Anal. Biochem. 329 (2004) 342-344.
-
[18]
[18] Z.G. Wang, S.J. Benkovic, Purification, characterization, and kinetic studies of a soluble Bacteroides fragilis metallo-β-lactamases that provides multiple antibiotic resistance, J. Biol. Chem. 273 (1998) 22402-22408.
-
[19]
[19] V.K. Marthada, The enthalpy of solution of SRM 1655 (KCl) in H2O, J. Res. Nat. Bur. Stand. 85 (1980) 467-471.
-
[20]
[20] D.A. Ditmars, S. Ishihara, S.S. Chang, Enthalpy and heat-capacity standard reference material: synthetic sapphire (α-Al2O3) from 10 to 2250 K, J. Res. Nat. Bur. Stand. 87 (1982) 159-163.
-
[21]
[21] H.Z. Gao, Q. Yang, X.Y. Yan, et al., Exploring antibiotic resistant mechanism by microcalorimetry determination of thermokinetic parameters of metallo-β-lactamases L1 catalyzing penicillin G hydrolysis, J. Therm. Anal. Calorim. 107 (2012) 321-324.
-
[22]
[22] L. Zhai, K.W. Yang, C.C. Liu, et al., Exploring antibiotic resistant mechanism by microcalorimetry. III: Determination of thermokinetic parameters of cefazolin hydrolysis with metallo-β-lactamases CcrA, J. Therm. Anal. Calorim. 111 (2013) 1657-1661.
-
[23]
[23] W.Z. Gao, B.G. Xing, R.Y. Tsien, J.H. Rao, Novel fluorogenic substrates for imaging b-lactamase gene expression, J. Am. Chem. Soc. 125 (2003) 11146-11147.
-
[24]
[24] Z. Yang, P.L. Ho, G. Liang, et al., Using b-lactamase to trigger supramolecular hydrogelation, J. Am. Chem. Soc. 129 (2007) 266-267.
-
[25]
[25] S. Mizukami, S. Watanabe, Y. Hori, K. Kikuchi, Covalent protein labeling based on noncatalytic b-lactamase and a designed FRET substrate, J. Am. Chem. Soc. 131 (2009) 5016-5017.
-
[26]
[26] M.D. Peraro, A.J. Vila, P. Carloni, M.L. Klein, Role of zinc content on the catalytic efficiency of B1 metallo-β-lactamases, J. Am. Chem. Soc. 129 (2007) 2808-2816.
-
[27]
[27] J.H. Ullah, T.R. Walsh, I.A. Taylor, et al., The crystal structure of the L1 metallo-blactamase from Stenotrophomonas maltophilia at 1.7 Å resolution, J. Mol. Biol. 284 (1998) 125-136.
-
[1]
-
-
-
[1]
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
-
[2]
Yueying Wang , Jianming Xiong , Linwei Xin , Yuanyuan Li , He Huang , Wenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003
-
[3]
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
-
[4]
A-Yang Wang , Sheng-Hua Zhou , Mao-Yin Ran , Xin-Tao Wu , Hua Lin , Qi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377
-
[5]
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
-
[6]
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
-
[7]
Jing Zhang , Charles Wang , Yaoyao Zhang , Haining Xia , Yujuan Wang , Kun Ma , Junfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420
-
[8]
Zhipeng Li , Qincong Feng , Jianliang Shen . A β-lactamase-activatable photosensitizer for the treatment of resistant bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109602-. doi: 10.1016/j.cclet.2024.109602
-
[9]
Chaohui Zheng , Jing Xi , Shiyi Long , Tianpei He , Rui Zhao , Xinyuan Luo , Na Chen , Quan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223
-
[10]
Lu-Lu He , Lan-Tu Xiong , Xin Wang , Yu-Zhen Li , Jia-Bao Li , Yu Shi , Xin Deng , Zi-Ning Cui . Application of inhibitors targeting the type III secretion system in phytopathogenic bacteria. Chinese Chemical Letters, 2025, 36(4): 110044-. doi: 10.1016/j.cclet.2024.110044
-
[11]
Shengwen Guan , Zhaotong Wei , Ningxu Han , Yude Wei , Bin Xu , Ming Wang , Junjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348
-
[12]
Tiantian Man , Fulin Zhu , Yaqi Huang , Yuhao Piao , Yan Su , Shengyuan Deng , Ying Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036
-
[13]
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
-
[14]
Feihu Wu , Gengwen Chen , Kaitao Lai , Shiqing Zhang , Yingchao Liu , Ruijian Luo , Xiaocong Wang , Pinzhi Cao , Yi Ye , Jiarong Lian , Junle Qu , Zhigang Yang , Xiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884
-
[15]
Yunxia Liu , Guandong Wu , Lin Li , Yiming Niu , Bingsen Zhang , Botao Qiao , Junhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608
-
[16]
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
-
[17]
Wen Zhong , Dan Zheng , Xukun Liao , Yadi Zhou , Yan Jiang , Ting Gao , Ming Li , Chengli Yang . Elaborate construction of pH-sensitive polymyxin B loaded nanoparticles for safe and effective treatment of carbapenem-resistant Klebsiella pneumoniae. Chinese Chemical Letters, 2025, 36(3): 110448-. doi: 10.1016/j.cclet.2024.110448
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(730)
- HTML views(12)