Citation:
Cai-Xia Yin, Li-Jun Qu, Fang-Jun Huo. A pyridoxal-based chemosensor for visual detection of copper ion and its application in bioimaging[J]. Chinese Chemical Letters,
;2014, 25(9): 1230-1234.
doi:
10.1016/j.cclet.2014.06.017
-
A pyridoxal-based chemosensor was synthesized by reacting hydrazine hydrate and pyridoxal hydrochloride in ethanol and characterized by NMR and ESI-MS. The optical properties of the compound were investigated in a methanol: HEPES solution. The compound displayed selectivity for Cu2+, as evidenced by a colorless to yellow color change, which was characterized using UV-vis spectroscopy. The fluorescence of the compound can be quenched only by Cu2+, accompanying by a color change from blue to colorless. Furthermore, it can be used in bioimaging.
-
Keywords:
- Pyridoxal-based,
- Copper ion,
- Chemosensor,
- Bioimaging
-
-
-
[1]
[1] V. Dujols, F. Ford, A.W. Czarnik, A long-wavelength fluorescent chemo-dosimeter selective for Cu (II) ion in water, J. Am. Chem. Soc. 119 (1997) 7386-7387.
-
[2]
[2] J. Tan, X.P. Yan, 2,1,3-Benzoxadiazole-based selective chromogenic chemosensor for rapid naked-eye detection of Hg2+ and Cu2+, Talanta 76 (2008) 9-14.
-
[3]
[3] L.P. Singh, J.M. Bhatnagar, Copper(II) selective electrochemical sensor based on Schiff base complexes, Talanta 64 (2004) 313-319.
-
[4]
[4] Y.S. Xie, Y.B. Ding, X. Li, et al., Selective, sensitive and reversible "turn-on" fluorescent cyanide probes based on 2,20-dipyridylaminoanthracene-Cu2+ ensembles, Chem. Commun. 48 (2012) 11513-11515.
-
[5]
[5] F.J. Huo, C.X. Yin, Y.T. Yang, et al., Ultraviolet-visible light (UV-vis)-reversible but fluorescence irreversible chemosensor for copper in water and its application in living cells, Anal. Chem. 84 (2012) 2219-2223.
-
[6]
[6] L.J. Qu, C.X. Yin, F.J. Huo, Y.B. Zhang, Y.Q. Li, A commercially available fluorescence chemosensor for copper ion and its application in bioimaging, Sens. Actuators B 183 (2013) 636-640.
-
[7]
[7] Y.T. Yang, F.J. Huo, C.X. Yin, et al., Combined spectral experiment and theoretical calculation to study the chemosensors of copper and their applications in anion bioimaging, Sens. Actuators B 177 (2013) 1189-1197.
-
[8]
[8] F.J. Huo, L. Wang, C.X. Yin, et al., The synthesis, characterization of three isomers of rhodamine derivative and their application in copper (II) ion recognition, Sens. Actuators B 188 (2013) 735-740.
-
[9]
[9] L.J. Qu, C.X. Yin, F.J. Huo, et al., A pyridoxal-based dual chemosensor for visual detection of copper ion and ratiometric fluorescent detection of zinc ion, Sens. Actuators B 191 (2014) 158-164.
-
[10]
[10] F.Y. Wu, S.G. Cao, C.X. Xie, A highly selective chemosensor for copper ion based on ICT fluorescence, Chin. Chem. Lett. 23 (2012) 607-610.
-
[11]
[11] X.B. Li, Z.G. Niu, L.L. Chang, M.X. Chen, E.J. Wang, Quinoline-based colorimetric chemosensor for Cu2+: Cu2+-induced deprotonation leading to color change, Chin. Chem. Lett. 25 (2014) 80-82.
-
[12]
[12] K. Yoosaf, B.I. Ipe, C.H. Suresh, K.G. Thomas, In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media, J. Phys. Chem. C 111 (2007) 12839-12847.
-
[13]
[13] T. Gunnlaugsson, J.P. Leonard, N.S. Murray, Highly selective colorimetric nakedeye Cu(II) detection using an azobenzene chemosensor, Org. Lett. 6 (2004) 1557-1560.
-
[14]
[14] M.H. Lee, B.K. Cho, J. Yoon, et al., Selectively chemodosimetric detection of Hg(II) in aqueous media, Org. Lett. 9 (2007) 4515-4518.
-
[15]
[15] M. Zhu, M.G. Yuan, X.F. Liu, et al., Visible near-infrared chemosensor for mercury ion, Org. Lett. 10 (2008) 1481-1484.
-
[16]
[16] S.J. Lee, S.S. Lee, I.Y. Jeong, et al., Azobenzene coupled chromogenic receptors for the selective detection of copper(II) and its application as a chemosensor kit, Tetrahedron Lett. 48 (2007) 393-396.
-
[17]
[17] R.L. Sheng, P.F. Wang, W.M. Liu, et al., A new colorimetric chemosensor for Hg2+ based on coumarin azine derivative, Sens. Actuators B 128 (2008) 507-511.
-
[18]
[18] H.L. Mu, R. Gong, Q. Ma, Y.M. Sun, E.Q. Fu, A novel colorimetric and fluorescent chemosensor: synthesis and selective detection for Cu2+ and Hg2+, Tetrahedron Lett. 48 (2007) 5525-5529.
-
[19]
[19] T. Elisa, M.N. Elizabeth, J. Jacek, S.J. Lippard, Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells, J. Am. Chem. Soc. 130 (2008) 15776-15777.
-
[20]
[20] B. Tang, H. Huang, K.H. Xu, et al., Highly sensitive and selective near-infrared fluorescent probe for zinc and its application to macrophage cells, Chem. Commun. 34 (2006) 3609-3611.
-
[21]
[21] M.N. Elizabeth, J.L. Stephen, Turn-on and ratiometric mercury sensing in water with a red-emitting probe, J. Am. Chem. Soc. 129 (2007) 5910-5918.
-
[22]
[22] P. Li, X. Duan, Z.Z. Chen, et al., A near-infrared fluorescent probe for detecting copper(II) with high selectivity and sensitivity and its biological imaging applications, Chem. Commun. 47 (2011) 7755-7757.
-
[23]
[23] T.R. Li, Z.Y. Yang, Y. Li, et al., A novel fluorescein derivative as a colorimetric chemosensor for detecting copper(II) ion, Dyes Pigments 88 (2011) 103-108.
-
[24]
[24] R. Martínez, A. Espinosa, A. Tárraga, P. Molina, Bis(indolyl)methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for Cu2+ cations, Tetrahedron 64 (2008) 2184-2191.
-
[25]
[25] N. Aksuner, E. Henden, I. Yilmaz, A. Cukurovali, Selective optical sensing of copper(II) ions based on a novel cyclobutane-substituted Schiff base ligand embedded in polymer films, Sens. Actuators B 134 (2008) 510-515.
-
[26]
[26] J.W. Karr, V.A. Szalai, Role of aspartate-1 in Cu(II) binding to the amyloid-b peptide of alzheimer's disease, J. Am. Chem. Soc. 129 (2007) 3796-3797.
-
[27]
[27] J. Li, V.N. Uversky, A.L. Fink, Effect of familial parkinson's disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of humana-synuclein, Biochemistry 40 (2001) 11604-11613.
-
[28]
[28] B.B. Tewari, Studies on complexation in solution with a paper electrophoretic technique [the system copper(II)/cobalt(II) emethioninee penicillamine], J. Chem. Eng. Data 55 (2010) 1779-1783.
-
[29]
[29] L.M. Zhang, J. Lichtmannegger, K.H. Summer, et al., Tracing copper-thiomolybdate complexes in a prospective treatment for Wilson's disease, Biochemistry 48 (2009) 891-897.
-
[30]
[30] C. Kar, M.D. Adhikari, B.K. Datta, et al., A CHEF-based biocompatible turn ON ratiometric sensor for sensitive and selective probing of Cu2+, Sens. Actuators B 188 (2013) 1132-1140.
-
[31]
[31] X.F. Yang, D.B. Wu, H. Li, Sensitive determination of cobalt(II) using a spiro fluorescein hydrazide as a chemiluminogenic reagent, Microchim. Acta 149 (2005) 123-129.
-
[32]
[32] H.A. Benesi, J.H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703-2707.
-
[33]
[33] M. Barra, C. Bohne, J.C. Scaiano, Effect of cyclodextrin complexation on the photochemistry of xanthone. Absolute measurement of the kinetics for tripletstate exit, J. Am. Chem. Soc. 112 (1990) 8075-8079.
-
[34]
[34] S.Q. Cui, S.Z. Pu, W.J. Liu, G. Liu, Synthesis and photochromic properties of a multiple responsive diarylethene and its selective binding affinity for copper(II) ion, Dyes Pigments 91 (2011) 435-441.
-
[35]
[35] Y.B. Ding, X. Li, T. Li, W.H. Zhu, Y.S. Xie, α-Monoacylated and α,α'-and α,β'-diacylated dipyrrins as highly sensitive fluorescence "Turn-on" Zn2+ probes, J. Org. Chem. 78 (2013) 5328-5338.
-
[36]
[36] B. Chen, Y.B. Ding, X. Li, et al., Steric hindrance-enforced distortion as a general strategy for the design of fluorescence "turn-on" cyanide probes, Chem. Commun. 49 (2013) 10136-10138.
-
[37]
[37] B.P. Joshi, J. Park, W.I. Lee, et al., Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor, Talanta 78 (2009) 903-909.
-
[38]
[38] M.J. Kim, K. Kaur, N. Singh, D.O. Jang, Benzim idazole-based receptor for Zn2+ recognition in a biological system: a chemosensor operated by retarding the excited state proton transfer, Tetrahedron 68 (2012) 5429-5433.
-
[39]
[39] S.H. Mashraqui, R. Betkar, S. Ghorpade, et al., A new internal charge transfer probe for the highly selective detection of Zn(II) by means of dual colorimetric and fluorescent turn-on responses, Sens. Actuators B 174 (2012) 299-305.
-
[40]
[40] C.J. Gao, X.J. Jin, X.H. Yan, et al., A small molecular fluorescent sensor for highly selectivity of zinc ion, Sens. Actuators B 176 (2013) 775-781.
-
[1]
-
-
-
[1]
Chuanfeng Fan , Jian Gao , Yingkai Gao , Xintong Yang , Gaoning Li , Xiaochun Wang , Fei Li , Jin Zhou , Haifeng Yu , Yi Huang , Jin Chen , Yingying Shan , Li Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838
-
[2]
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
-
[3]
Haixian Ren , Yuting Du , Xiaojing Yang , Fangjun Huo , Le Zhang , Caixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867
-
[4]
Yunlong Li , Xinyu Zhang , Shuang Liu , Chunsheng Li , Qiang Wang , Jin Ye , Yong Lu , Jiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501
-
[5]
Bin Fang , Jiaqi Yang , Limin Wang , Haoqin Li , Jiaying Guo , Jiaxin Zhang , Qingyuan Guo , Bo Peng , Kedi Liu , Miaomiao Xi , Hua Bai , Li Fu , Lin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913
-
[6]
Lixian Fu , Yiyun Tan , Yue Ding , Weixia Qing , Yong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886
-
[7]
Fan Zheng , Runsha Xiao , Shuai Huang , Zhikang Chen , Chen Lai , Anyao Bi , Heying Yao , Xueping Feng , Zihua Chen , Wenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876
-
[8]
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042
-
[9]
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
-
[10]
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
-
[11]
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
-
[12]
Mengmeng Ao , Jian Wei , Chuan-Shu He , Heng Zhang , Zhaokun Xiong , Yonghui Song , Bo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882
-
[13]
Zheyi Li , Xiaoyang Liang , Zitong Qiu , Zimeng Liu , Siyu Wang , Yue Zhou , Nan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592
-
[14]
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
-
[15]
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
-
[16]
Zhaodong WANG . In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268
-
[17]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[18]
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
-
[19]
Zhixiao Xiong , Shanni Qiu , Yuyu Wang , Houna Duan , Yi Xiao , Yufang Xu , Weiping Zhu , Xuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002
-
[20]
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(667)
- HTML views(2)