Citation: Cai-Xia Yin, Li-Jun Qu, Fang-Jun Huo. A pyridoxal-based chemosensor for visual detection of copper ion and its application in bioimaging[J]. Chinese Chemical Letters, ;2014, 25(9): 1230-1234. doi: 10.1016/j.cclet.2014.06.017 shu

A pyridoxal-based chemosensor for visual detection of copper ion and its application in bioimaging

  • Corresponding author: Fang-Jun Huo, 
  • Received Date: 31 March 2014
    Available Online: 16 June 2014

    Fund Project: The work was supported by the National Natural Science Foundation of China (No. 21102086) (No. 21102086) the Taiyuan Technology Star Special (No. 12024703) (No. 2012-007) the Program for the Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Shanxi (TYMIT, No. 2013802) (No. 12024703)CAS Key Laboratory of Analytical Chemistry for Living Biosystems Open Foundation (No. ACL201304). (TYMIT, No. 2013802)

  • A pyridoxal-based chemosensor was synthesized by reacting hydrazine hydrate and pyridoxal hydrochloride in ethanol and characterized by NMR and ESI-MS. The optical properties of the compound were investigated in a methanol: HEPES solution. The compound displayed selectivity for Cu2+, as evidenced by a colorless to yellow color change, which was characterized using UV-vis spectroscopy. The fluorescence of the compound can be quenched only by Cu2+, accompanying by a color change from blue to colorless. Furthermore, it can be used in bioimaging.
  • 加载中
    1. [1]

      [1] V. Dujols, F. Ford, A.W. Czarnik, A long-wavelength fluorescent chemo-dosimeter selective for Cu (II) ion in water, J. Am. Chem. Soc. 119 (1997) 7386-7387.

    2. [2]

      [2] J. Tan, X.P. Yan, 2,1,3-Benzoxadiazole-based selective chromogenic chemosensor for rapid naked-eye detection of Hg2+ and Cu2+, Talanta 76 (2008) 9-14.

    3. [3]

      [3] L.P. Singh, J.M. Bhatnagar, Copper(II) selective electrochemical sensor based on Schiff base complexes, Talanta 64 (2004) 313-319.

    4. [4]

      [4] Y.S. Xie, Y.B. Ding, X. Li, et al., Selective, sensitive and reversible "turn-on" fluorescent cyanide probes based on 2,20-dipyridylaminoanthracene-Cu2+ ensembles, Chem. Commun. 48 (2012) 11513-11515.

    5. [5]

      [5] F.J. Huo, C.X. Yin, Y.T. Yang, et al., Ultraviolet-visible light (UV-vis)-reversible but fluorescence irreversible chemosensor for copper in water and its application in living cells, Anal. Chem. 84 (2012) 2219-2223.

    6. [6]

      [6] L.J. Qu, C.X. Yin, F.J. Huo, Y.B. Zhang, Y.Q. Li, A commercially available fluorescence chemosensor for copper ion and its application in bioimaging, Sens. Actuators B 183 (2013) 636-640.

    7. [7]

      [7] Y.T. Yang, F.J. Huo, C.X. Yin, et al., Combined spectral experiment and theoretical calculation to study the chemosensors of copper and their applications in anion bioimaging, Sens. Actuators B 177 (2013) 1189-1197.

    8. [8]

      [8] F.J. Huo, L. Wang, C.X. Yin, et al., The synthesis, characterization of three isomers of rhodamine derivative and their application in copper (II) ion recognition, Sens. Actuators B 188 (2013) 735-740.

    9. [9]

      [9] L.J. Qu, C.X. Yin, F.J. Huo, et al., A pyridoxal-based dual chemosensor for visual detection of copper ion and ratiometric fluorescent detection of zinc ion, Sens. Actuators B 191 (2014) 158-164.

    10. [10]

      [10] F.Y. Wu, S.G. Cao, C.X. Xie, A highly selective chemosensor for copper ion based on ICT fluorescence, Chin. Chem. Lett. 23 (2012) 607-610.

    11. [11]

      [11] X.B. Li, Z.G. Niu, L.L. Chang, M.X. Chen, E.J. Wang, Quinoline-based colorimetric chemosensor for Cu2+: Cu2+-induced deprotonation leading to color change, Chin. Chem. Lett. 25 (2014) 80-82.

    12. [12]

      [12] K. Yoosaf, B.I. Ipe, C.H. Suresh, K.G. Thomas, In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media, J. Phys. Chem. C 111 (2007) 12839-12847.

    13. [13]

      [13] T. Gunnlaugsson, J.P. Leonard, N.S. Murray, Highly selective colorimetric nakedeye Cu(II) detection using an azobenzene chemosensor, Org. Lett. 6 (2004) 1557-1560.

    14. [14]

      [14] M.H. Lee, B.K. Cho, J. Yoon, et al., Selectively chemodosimetric detection of Hg(II) in aqueous media, Org. Lett. 9 (2007) 4515-4518.

    15. [15]

      [15] M. Zhu, M.G. Yuan, X.F. Liu, et al., Visible near-infrared chemosensor for mercury ion, Org. Lett. 10 (2008) 1481-1484.

    16. [16]

      [16] S.J. Lee, S.S. Lee, I.Y. Jeong, et al., Azobenzene coupled chromogenic receptors for the selective detection of copper(II) and its application as a chemosensor kit, Tetrahedron Lett. 48 (2007) 393-396.

    17. [17]

      [17] R.L. Sheng, P.F. Wang, W.M. Liu, et al., A new colorimetric chemosensor for Hg2+ based on coumarin azine derivative, Sens. Actuators B 128 (2008) 507-511.

    18. [18]

      [18] H.L. Mu, R. Gong, Q. Ma, Y.M. Sun, E.Q. Fu, A novel colorimetric and fluorescent chemosensor: synthesis and selective detection for Cu2+ and Hg2+, Tetrahedron Lett. 48 (2007) 5525-5529.

    19. [19]

      [19] T. Elisa, M.N. Elizabeth, J. Jacek, S.J. Lippard, Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells, J. Am. Chem. Soc. 130 (2008) 15776-15777.

    20. [20]

      [20] B. Tang, H. Huang, K.H. Xu, et al., Highly sensitive and selective near-infrared fluorescent probe for zinc and its application to macrophage cells, Chem. Commun. 34 (2006) 3609-3611.

    21. [21]

      [21] M.N. Elizabeth, J.L. Stephen, Turn-on and ratiometric mercury sensing in water with a red-emitting probe, J. Am. Chem. Soc. 129 (2007) 5910-5918.

    22. [22]

      [22] P. Li, X. Duan, Z.Z. Chen, et al., A near-infrared fluorescent probe for detecting copper(II) with high selectivity and sensitivity and its biological imaging applications, Chem. Commun. 47 (2011) 7755-7757.

    23. [23]

      [23] T.R. Li, Z.Y. Yang, Y. Li, et al., A novel fluorescein derivative as a colorimetric chemosensor for detecting copper(II) ion, Dyes Pigments 88 (2011) 103-108.

    24. [24]

      [24] R. Martínez, A. Espinosa, A. Tárraga, P. Molina, Bis(indolyl)methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for Cu2+ cations, Tetrahedron 64 (2008) 2184-2191.

    25. [25]

      [25] N. Aksuner, E. Henden, I. Yilmaz, A. Cukurovali, Selective optical sensing of copper(II) ions based on a novel cyclobutane-substituted Schiff base ligand embedded in polymer films, Sens. Actuators B 134 (2008) 510-515.

    26. [26]

      [26] J.W. Karr, V.A. Szalai, Role of aspartate-1 in Cu(II) binding to the amyloid-b peptide of alzheimer's disease, J. Am. Chem. Soc. 129 (2007) 3796-3797.

    27. [27]

      [27] J. Li, V.N. Uversky, A.L. Fink, Effect of familial parkinson's disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of humana-synuclein, Biochemistry 40 (2001) 11604-11613.

    28. [28]

      [28] B.B. Tewari, Studies on complexation in solution with a paper electrophoretic technique [the system copper(II)/cobalt(II) emethioninee penicillamine], J. Chem. Eng. Data 55 (2010) 1779-1783.

    29. [29]

      [29] L.M. Zhang, J. Lichtmannegger, K.H. Summer, et al., Tracing copper-thiomolybdate complexes in a prospective treatment for Wilson's disease, Biochemistry 48 (2009) 891-897.

    30. [30]

      [30] C. Kar, M.D. Adhikari, B.K. Datta, et al., A CHEF-based biocompatible turn ON ratiometric sensor for sensitive and selective probing of Cu2+, Sens. Actuators B 188 (2013) 1132-1140.

    31. [31]

      [31] X.F. Yang, D.B. Wu, H. Li, Sensitive determination of cobalt(II) using a spiro fluorescein hydrazide as a chemiluminogenic reagent, Microchim. Acta 149 (2005) 123-129.

    32. [32]

      [32] H.A. Benesi, J.H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703-2707.

    33. [33]

      [33] M. Barra, C. Bohne, J.C. Scaiano, Effect of cyclodextrin complexation on the photochemistry of xanthone. Absolute measurement of the kinetics for tripletstate exit, J. Am. Chem. Soc. 112 (1990) 8075-8079.

    34. [34]

      [34] S.Q. Cui, S.Z. Pu, W.J. Liu, G. Liu, Synthesis and photochromic properties of a multiple responsive diarylethene and its selective binding affinity for copper(II) ion, Dyes Pigments 91 (2011) 435-441.

    35. [35]

      [35] Y.B. Ding, X. Li, T. Li, W.H. Zhu, Y.S. Xie, α-Monoacylated and α,α'-and α,β'-diacylated dipyrrins as highly sensitive fluorescence "Turn-on" Zn2+ probes, J. Org. Chem. 78 (2013) 5328-5338.

    36. [36]

      [36] B. Chen, Y.B. Ding, X. Li, et al., Steric hindrance-enforced distortion as a general strategy for the design of fluorescence "turn-on" cyanide probes, Chem. Commun. 49 (2013) 10136-10138.

    37. [37]

      [37] B.P. Joshi, J. Park, W.I. Lee, et al., Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor, Talanta 78 (2009) 903-909.

    38. [38]

      [38] M.J. Kim, K. Kaur, N. Singh, D.O. Jang, Benzim idazole-based receptor for Zn2+ recognition in a biological system: a chemosensor operated by retarding the excited state proton transfer, Tetrahedron 68 (2012) 5429-5433.

    39. [39]

      [39] S.H. Mashraqui, R. Betkar, S. Ghorpade, et al., A new internal charge transfer probe for the highly selective detection of Zn(II) by means of dual colorimetric and fluorescent turn-on responses, Sens. Actuators B 174 (2012) 299-305.

    40. [40]

      [40] C.J. Gao, X.J. Jin, X.H. Yan, et al., A small molecular fluorescent sensor for highly selectivity of zinc ion, Sens. Actuators B 176 (2013) 775-781.

  • 加载中
    1. [1]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    2. [2]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    3. [3]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    4. [4]

      Yunlong LiXinyu ZhangShuang LiuChunsheng LiQiang WangJin YeYong LuJiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501

    5. [5]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    6. [6]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    7. [7]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    8. [8]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    9. [9]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    10. [10]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    11. [11]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    12. [12]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    13. [13]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    14. [14]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    15. [15]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    16. [16]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    17. [17]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    18. [18]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    19. [19]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    20. [20]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

Metrics
  • PDF Downloads(0)
  • Abstract views(667)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return