Citation: Wen-Jia Cai, Lin-Ping Qian, Bin Yue, He-Yong He. Rh doping effect on coking resistance of Ni/SBA-15 catalysts in dry reforming of methane[J]. Chinese Chemical Letters, ;2014, 25(11): 1411-1415. doi: 10.1016/j.cclet.2014.06.016 shu

Rh doping effect on coking resistance of Ni/SBA-15 catalysts in dry reforming of methane

  • Corresponding author: Bin Yue,  He-Yong He, 
  • Received Date: 9 May 2014
    Available Online: 11 June 2014

    Fund Project: This work was supported by the National Natural Science Foundation of China (21173050, 21371035). (21173050, 21371035)

  • A series of SBA-15 supported bimetallic Rh-Ni catalysts with different weight ratio of Rh/Ni in the range of 0-0.04 were prepared for carbon dioxide reforming of methane. The doping effect of Rh on catalytic activity as well as carbon accumulation and removal over the catalysts was studied. The characterization results indicated that the addition of a small amount of Rh promoted the reducibility of Ni particles and decreased the Ni particle size. During the dry reforming reaction, the carbon deposition was originated from CH4 decomposition and CO disproportionation. The Rh-Ni catalyst with smallmetallic particle size inhibited the carbon formation and exhibited high efficiency in the removal of coke. In comparison with bare Ni-based catalyst, the Rh-Ni bimetallic catalysts showed high activity and stability in the dry reforming of methane.
  • 加载中
    1. [1]

      [1] A. Shamsi, Carbon formation on Ni-MgO catalyst during reaction of methane in the presence of CO2 and CO, Appl. Catal. A Gen. 277 (2004) 23-30.

    2. [2]

      [2] S. Damyanova, B. Pawelec, K. Arishtirova, et al., MCM-41 supported PdNi catalysts for dry reforming of methane, Appl. Catal. B Environ. 92 (2009) 250-261.

    3. [3]

      [3] M.L. Zhang, S.F. Ji, L.H. Hu, et al., Structural characterization of highly stable Ni/SBA-15 catalyst and its catalytic performance for methane reforming with CO2, Chin. J. Catal. 27 (2006) 777-782.

    4. [4]

      [4] C.K. Shi, P. Zhang, Effect of a second metal (Y, K, Ca, Mn or Cu) addition on the carbon dioxide reforming of methane over nanostructured palladium catalysts, Appl. Catal. B Environ. 115 (2012) 190-200.

    5. [5]

      [5] M.C.J. Bradford, M.A. Vannice, CO2 reforming of CH4, Catal. Rev. Sci. Eng. 41 (1999) 1-42.

    6. [6]

      [6] M.C.J. Bradford, M.A. Vannice, Catalytic reforming of methane with carbon dioxide over nickel catalysts. 1. Catalyst characterization and activity, Appl. Catal. A Gen. 142 (1996) 73-96.

    7. [7]

      [7] L. Qian, Z.F. Yan, Study on the reaction mechanism for carbon dioxide reforming of methane over supported nickel catalyst, Chin. Chem. Lett. 14 (2003) 1081-1084.

    8. [8]

      [8] V.Y. Bychkov, Y.P. Tyulenin, A.A. Firsova, et al., Carbonization of nickel catalysts and its effect on methane dry reforming, Appl. Catal. A Gen. 453 (2013) 71-79.

    9. [9]

      [9] L. Guczi, G. Stefler, O. Geszti, et al., Methane dry reforming with CO2: a study on surface carbon species, Appl. Catal. A Gen. 375 (2010) 236-246.

    10. [10]

      [10] D.P. Liu, W.N.E. Cheo, Y.W.Y. Lim, et al., A comparative study on catalyst deactivation of nickel and cobalt incorporated MCM-41 catalysts modified by platinum in methane reforming with carbon dioxide, Catal. Today 154 (2010) 229-236.

    11. [11]

      [11] J.C.S. Wu, H.C. Chou, Bimetallic Rh-Ni/BN catalyst for methane reforming with CO2, Chem. Eng. J. 148 (2009) 539-545.

    12. [12]

      [12] Z.Y. Hou, T. Yashima, Small amounts of Rh-promoted Ni catalysts for methane reforming with CO2, Catal. Lett. 89 (2003) 193-197.

    13. [13]

      [13] D.Y. Zhao, J.L. Feng, Q.S. Huo, et al., Triblock copolymer syntheses of mesoporous silica with periodic 50-300 angstrom pores, Science 279 (1998) 548-552.

    14. [14]

      [14] W.Z. Weng, C.R. Luo, J.J. Huang, Y.Y. Liao, H.L. Wan, Comparative study on the mechanisms of partial oxidation of methane to syngas over rhodium supported on SiO2 and γ-Al2O3, Top. Catal. 22 (2003) 87-93.

    15. [15]

      [15] A. Le Valant, N. Bion, F. Can, D. Duprez, F. Epron, Preparation and characterization of bimetallic Rh-Ni/Y2O3-Al2O3 for hydrogen production by raw bioethanol steam reforming: influence of the addition of nickel on the catalyst performances and stability, Appl. Catal. B Environ. 97 (2010) 72-81.

    16. [16]

      [16] S. Gaur, D.J. Haynes, J.J. Spivey, Rh, Ni, and Ca substituted pyrochlore catalysts for dry reforming of methane, Appl. Catal. A Gen. 403 (2011) 142-151.

    17. [17]

      [17] V.L. Barrio, P.L. Arias, J.F. Cambra, et al., Aromatics hydrogenation on silicaalumina supported palladium-nickel catalysts, Appl. Catal. A Gen. 242 (2003) 17-30.

    18. [18]

      [18] M. Ocsachoque, F. Pompeo, G. Gonzalez, Rh-Ni/CeO2-Al2O3 catalysts for methane dry reforming, Catal. Today 172 (2011) 226-231.

    19. [19]

      [19] M. Garcia-Dieguez, I.S. Pieta, M.C. Herrera, M.A. Larrubia, L.J. Alemany, Rh-Ni nanocatalysts for the CO2 and CO2 + H2O reforming of methane, Catal. Today 172 (2011) 136-142.

    20. [20]

      [20] H. Anita, G. Stefler, O. Geszti, et al., Methane dry reforming with CO2 on CeZr-oxide supported Ni, NiRh and NiCo catalysts prepared by sol-gel technique: relationship between activity and coke formation, Catal. Today 169 (2011) 102-111.

    21. [21]

      [21] U. Oemar, K. Hidajat, S. Kawi, Role of catalyst support over PdO-NiO catalysts on catalyst activity and stability for oxy-CO2 reforming of methane, Appl. Catal. A: Gen. 402 (2011) 176-187.

    22. [22]

      [22] I. Luisetto, S. Tuti, E. Di Bartolomeo, Co, Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane, Int. J. Hydrogen Energy 37 (2012) 15992-15999.

    23. [23]

      [23] J.Z. Luo, Z.L. Yu, C.F. Ng, C.T. Au, CO2/CH4 reforming over Ni-La2O3/5A: an investigation on carbon deposition and reaction steps, J. Catal. 194 (2000) 198-210.

    24. [24]

      [24] N.A. Pechimuthu, K.K. Pant, S.C. Dhingra, Deactivation studies over Ni-K/CeO2- Al2O3 catalyst for dry reforming of methane, Ind. Eng. Chem. Res. 46 (2007) 1731- 1736.

    25. [25]

      [25] M.A. Goula, A.A. Lemonidou, A.M. Efstathiou, Characterization of carbonaceous species formed during reforming of CH4 with CO2 over Ni/CaO-Al2O3 catalysts studied by various transient techniques, J. Catal. 161 (1996) 626-640.

  • 加载中
    1. [1]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    2. [2]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    3. [3]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    4. [4]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    5. [5]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    6. [6]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    7. [7]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    8. [8]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    9. [9]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    10. [10]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    11. [11]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    12. [12]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    13. [13]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    14. [14]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    15. [15]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    16. [16]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    17. [17]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    18. [18]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    19. [19]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    20. [20]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

Metrics
  • PDF Downloads(0)
  • Abstract views(853)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return