Citation: Hang Ma, Yang He, Ruo-Feng Huang, Xiao-Hui Zhang, Jing Pan, Jia-Qiang Li, Chao He, Xue-Ge Ling, Xuan-Lun Wang, Yan Xiong. Nucleophilic imidoesterification of dicarbonyl compounds with cyanatobenzenes through C-C bond formation[J]. Chinese Chemical Letters, ;2014, 25(10): 1327-1330. doi: 10.1016/j.cclet.2014.06.008 shu

Nucleophilic imidoesterification of dicarbonyl compounds with cyanatobenzenes through C-C bond formation

  • Corresponding author: Yan Xiong, 
  • Received Date: 22 May 2014
    Available Online: 10 June 2014

    Fund Project:

  • Under neat conditions, an efficient method for synthesis of imidoesters has been developed using cyanatobenzenes and dicarbonyl compounds. Nucleophilic addition spontaneously occurred between the two kinds of materials at room temperature with yields of up to 90%. A mechanism directed towards to the imidoester formation has been proposed.
  • 加载中
    1. [1]

      [1] A. Dutton, M. Adams, S.J. Singer, Bifunctional imidoesters as cross-linking reagents, Biochem. Biophys. Res. Commun. 23 (1966) 730-739.

    2. [2]

      [2] A. Ruoho, P.A. Bartlett, A. Dutton, S.J. Singer, A disulfide-bridge bifunctional imidoester as a reversible cross-linking reagent, Biochem. Biophys. Res. Commun. 63 (1975) 417-423.

    3. [3]

      [3] E.S. Hand, W.P. Jencks, Mechanism of the reaction of imido esters with amines, J. Am. Chem. Soc. 84 (1962) 3505-3514.

    4. [4]

      [4] A. Shaw, G.V. Marinetti, The effect of imidoesters, fluorodinitrobenzene and trinitrobenzenesulfonate on ion transport in human erythrocytes, Chem. Phys. Lipids 27 (1980) 329-335.

    5. [5]

      [5] S. Batmanghelich, R.C. Brown, J.S. Woodhead, I. Weeks, K. Smith, Preparation of a chemiluminescent imidoester for the non-radioactive labelling of proteins, J. Photochem. Photobiol. B 12 (1992) 193-201.

    6. [6]

      [6] C.A. Presant, S. Parker, Imidoester inhibition of lymphocyte DNA synthesis, Cancer Res. 39 (1979) 345-348.

    7. [7]

      [7] A. Pinner, Ueber die umwandlung der nitrile in imide, Eur. J. Inorg. Chem. 16 (1883) 1643-1655.

    8. [8]

      [8] E. Grigat, R. Pütter, Preparation of pyrimidines from cyanic esters and CH-acidic compounds, Angew. Chem. Int. Ed. 4 (1965) 877-878.

    9. [9]

      [9] D. Martin, H.J. Herrmann, S. Rackow, K. Nadolski, Addition reactions of cyanic esters, Angew. Chem. Int. Ed. 4 (1965) 73-74.

    10. [10]

      [10] J.M. Fedé, S. Jockusch, N. Lin, R.A. Moss, N.J. Turro, Aryloxy radicals from diaryloxydiazirines: α-cleavage of diaryloxycarbenes or excited diazirines? Org. Lett. 5 (2003) 5027-5030.

    11. [11]

      [11] P. Yin, W.B. Ma, Y. Chen, et al., Highly efficient cyanoimidation of aldehydes, Org. Lett. 11 (2009) 5482-5485.

    12. [12]

      [12] J.L. Esker, M. Newcomb, Chemistry of amidyl radicals produced from Nhydroxypyridine-2-thione imidate esters, J. Org. Chem. 58 (1993) 4933-4940.

    13. [13]

      [13] R.W. Leiby, Synthesis of 3-amino-4(3H)-quinazolinones from N-(2-carbomethoxyphenyl) imidate esters, J. Org. Chem. 50 (1985) 2926-2929.

    14. [14]

      [14] K. Buttke, H.J. Niclas, A convenient and improved procedure for the cyanation of enamines and 1,3-dicarbonyl compounds, Synth. Commun. 24 (1994) 3241-3248.

    15. [15]

      [15] (a) S.Y. Zheng, J.Y. Wang, Y. Xiong, Theoretical investigation on isomerization of Et2AlCN to Et2AlNC and cyanation of aldimine, J. Mol. Struct. Theochem. 869 (2008) 83-88;

    16. [16]

      (b) S.Y. Zheng, Y. Xiong, J.Y. Wang, Theoretical studies on identity SN2 reactions of lithium halide and methyl halide: a microhydration model, J. Mol. Model. 16 (2010) 1931-1937;

    17. [17]

      (c) Y. Xiong, X.Q. Zhang, Significant heterogeneous carbonate salt catalyzed acetylation of alcohols via a transesterification process with carbonate salt activated alcohol 1H NMR evidence, Chin. J. Chem. 29 (2011) 1143-1148;

    18. [18]

      (d) Y. Xiong, S.T. Zhang, X.G. Ling, X. Zhang, J.Y. Wang, Theoretical investiga-tion on identical anionic halide-exchange SN2 reaction processes on N-haloammonium cation NH3X+ (X = F, Cl, Br, and I), Int. J. Quantum Chem. 112 (2012) 2475-2481;

    19. [19]

      (e) X. Zhang, Y. Xiong, S.T. Zhang, et al., Aldol condensations of aldehydes and ketones catalyzed by primary amine on water, Asian J. Chem. 24 (2012) 751-755;

    20. [20]

      (f) X.G. Ling, Y. Xiong, S.T. Zhang, R.F. Huang, X.H. Zhang, Effective synthesis of benzyl halides triggered by in situ prepared hypervalent halides, Chin. Chem. Lett. 24 (2013) 45-48;

    21. [21]

      (g) X.G. Ling, Y. Xiong, R.F. Huang, et al., Synthesis of benzidine derivatives via FeCl3·6H2O-promoted oxidative coupling of anilines, J. Org. Chem. 78 (2013) 5218-5226;

    22. [22]

      (h) X.F. Xu, Y. Xiong, X.G. Ling, et al., A practical synthesis of bis(indolyl)methanes catalyzed by BF3·Et2O, Chin. Chem. Lett. 25 (2014) 406-410;

    23. [23]

      (i) Y. Li, Y. Xiong, X.M. Li, et al., Benzylation of arenes with benzyl ethers promoted by the in situ prepared superacid BF3-H2O, Green Chem. 16 (2014) 2976-2981.

  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    3. [3]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    4. [4]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    5. [5]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    6. [6]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    7. [7]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    8. [8]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    9. [9]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    10. [10]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    11. [11]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    12. [12]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    13. [13]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    14. [14]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    15. [15]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    16. [16]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    17. [17]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    18. [18]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    19. [19]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    20. [20]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

Metrics
  • PDF Downloads(0)
  • Abstract views(668)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return