Citation: K. Kesavan, Chithra M. Mathew, S. Rajendran. Lithium ion conduction and ion-polymer interaction in poly(vinyl pyrrolidone) based electrolytes blended with different plasticizers[J]. Chinese Chemical Letters, ;2014, 25(11): 1428-1434. doi: 10.1016/j.cclet.2014.06.005 shu

Lithium ion conduction and ion-polymer interaction in poly(vinyl pyrrolidone) based electrolytes blended with different plasticizers

  • Corresponding author: S. Rajendran, 
  • Received Date: 7 February 2014
    Available Online: 19 May 2014

  • Poly(ethylene oxide), poly(vinyl pyrrolidone) (PEO/PVP), lithium perchlorate salt (LiClO4) and different plasticizer based, gel polymer electrolytes were prepared by the solvent casting technique. XRD results show that the crystallinity decreases with the addition of different plasticizers. Consequently, there is an enhancement in the amorphousity of the samples responsible for the process of ion transport. FTIR spectroscopy is used to characterize the structure of the polymer and confirms the complexation of plasticizer with host polymer matrix. The ionic conductivity has been calculated using the bulk impedance obtained through impedance spectroscopy. Among the various plasticizers, the ethylene carbonate (EC) based complex exhibits a maximum ionic conductivity value of the order of 2.7279×10-4 S cm-1. Thermal stability of the prepared electrolyte films shows that they can be used in batteries at elevated temperatures. PEO (72%)/PVP (8%)/LiClO4 (8%)/EC (12%) has the maximum ionic conductivity value which is supported by the lowest optical band gap and lowest intensity in photoluminescence spectroscopy near 400-450 nm. Two and three dimensional topographic images of the sample having a maximum ionic conductivity show the presence of micropores.
  • 加载中
    1. [1]

      [1] L.A. Utracki, Polymer Alloys and Blends, FRG, Carl Hanser, Munich, 1990.

    2. [2]

      [2] S. Zulfiqar, S. Ahmad, Thermal degradation of blends of PVC with polysiloxane-1, Polym. Degr. Stab. 65 (1999) 243-247.

    3. [3]

      [3] D. Saika, Y.M. Chen-Yang, Y.T. Chen, Y.K. Li, S.I. Li, Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium ion battery, Desalination 234 (2008) 24-32.

    4. [4]

      [4] V.D. Noto, M. Bettinelli, M. Furiani, S. Lavina, M. Vidal, Conductivity, luminescence and vibrational studies of the poly(ethylene glycol) 400 electrolyte based on europium trichloride, Macromol. Chem. Phys. 197 (1996) 375-388.

    5. [5]

      [5] C.M. Burba, R. Frech, Spectroscopic measurements of ionic association in solutions of LiPF6, J. Phys. Chem. B 109 (2005) 15161-15164.

    6. [6]

      [6] R. Frech, S. Chintapalli, Effect of propylene carbonate as a plasticizer in high molecular weight PEO LiCF3SO3 electrolytes, Solid State Ionics 85 (1995) 61-66.

    7. [7]

      [7] Z. Stoeva, I.M. Litas, E. Staunton, Y.G. Andreev, P.G. Bruce, Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X=P, As, Sb, J. Am. Chem. Soc. 125 (2003) 4619-4626.

    8. [8]

      [8] K. KiranKumar, M. Ravi, Y. Pavani, et al., Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps, Physica B 406 (2011) 1706-1712.

    9. [9]

      [9] C.V.S. Reddy, X. Han, Q.Y. Zhu, L.Q. Mai, W. Chen, Dielectric spectroscopy studies on (PVP + PVA) polyblend film, Microelectron. Eng. 83 (2006) 281-285.

    10. [10]

      [10] A. Kumar, D. Sakia, F. Singh, D.K. Avasthi, Ionic conduction in 70 MeV C5+ ionirradiated P(VDF-HFP)-(PC + DEC)-LiCF3SO3 gel polymer electrolyte system, Solid State Ionics 176 (2005) 1585-1590.

    11. [11]

      [11] G.K. Prajapati, R. Roshan, P.N. Gupta, Effect of plasticizer on ionic transport and dielectric properties of PVA-H3PO4 proton conducting polymeric electrolytes, J. Phys. Chem. Solids 71 (2010) 1717-1723.

    12. [12]

      [12] B.L. Papke, M.A. Ratner, D.F. Shriver, Vibrational spectroscopic determination of structure and ion pairing in complexes of poly (ethylene oxide) with Lithium salts, J. Electrochem. Soc. 129 (1982) 1434-1438.

    13. [13]

      [13] S. Intarakamhang, Preparation, Characterization and Molecular Modeling of Poly (Ethylene oxide)/Poly (Vinyl Pyrrolidone) Montmorillonite Nano-Composite Solid Electrolytes, 2005, p. 54.

    14. [14]

      [14] C.V. Subba Reddy, A.P. Ji, Q.Y. Zhu, L.Q. Mai, W. Chen, Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications, Eur. Phys. J. E 19 (2006) 471-476.

    15. [15]

      [15] C.S. Ramya, S. Selvasekarapandian, T. Savitha, G. Hirankumar, P.C. Angelo, Vibrational and impedance spectroscopic study on PVP-NH4SCN based polymer electrolytes, Physica B 393 (2007) 11-17.

    16. [16]

      [16] N. Vijaya, S. Selvasekarapandian, S. Karthikeyan, et al., Synthesis and characterization of proton conducting polymer electrolyte based on poly(N-vinyl pyrrolidone), J. Appl. Sci. 127 (2013) 1538-1543.

    17. [17]

      [17] A.M. Stephan, R. Thirunakaran, N.G. Renganathan, et al., A study on polymer blend electrolyte based on PVC/PMMA with lithium salt, J. Power Sources 81 (1999) 752-758.

    18. [18]

      [18] S. Rajendran, M.R. Prabhu, Effect of different plasticizer on structural and electrical properties of PEMA-based polymer electrolytes, J. Appl. Electrochem. 40 (2010) 327-332.

    19. [19]

      [19] M. Watanabe, N. Ogata, J.R. MacCullum, C.A. Vincent, Polymer Electrolyte Review, vol. 1, Elsevier, New York, 1987.

    20. [20]

      [20] J.Y. Song, Y.Y. Wang, C.C. Wan, Preparation and characterization of poly(vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-ion batteries, J. Electrochem. Soc. 145 (1998) 1207-1211.

    21. [21]

      [21] K.M. Abraham, M. Alamgir, D.K. Hoffman, Polymer electrolytes reinforced by Celgard1 membranes, J. Electrochem. Soc. 142 (1995) 683-687.

    22. [22]

      [22] M.B. Armand, J.M. Chabagno, J.M. Duclot, et al., Fast-Ion Transport in Solids, North-Holland, Amsterdam, 1979.

    23. [23]

      [23] T. Miyamoto, K. Shibayama, Free-volume model for ionic conductivity in polymers, J. Appl. Phys. 44 (1973) 5372-5376.

    24. [24]

      [24] H.F. Mark, Encyclopedia of Polymer Science and Engineering, vol. 1, Wiley Interscience Publication, John Wiley &Sons, New York, 1964.

    25. [25]

      [25] M. Ulaganathan, S. Rajendran, Li ion conduction on plasticizer-added PVAc-based hybrid polymer electrolytes, Ionics 16 (2010) 667-672.

    26. [26]

      [26] S. Rajendran, M. Sivakumar, R. Subadevi, Investigations on the effect of various plasticizers in PVA-PMMA solid polymer blend electrolytes, Mater. Lett. 58 (2004) 641-649.

    27. [27]

      [27] Y. Wang, X. Ma, Q. Zhang, N. Tian, Synthesis and properties of gel polymer electrolyte membranes based on novel comb-like methyl methacrylate copolymers, J. Membr. Sci. 349 (2010) 279-286.

    28. [28]

      [28] M.M. Nasef, H. Saidi, Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes, Mater. Chem. Phys. 99 (2006) 361-369.

    29. [29]

      [29] E.M. Abdelrazk, Spectroscopic studies on the effect of dopingwith CoBr2 and MgCl2 on some physical properties of polyvinylalcohol films, Physica B 403 (2008) 2137-2142.

    30. [30]

      [30] N.R. Rao, Ultraviolet and Visible Spectroscopy: Chemical Applications, Butterworth, London, 1967.

    31. [31]

      [31] G.M. Thutupalli, G. Tomlin, The optical properties of thin films of cadmium and zinc selenides and tellurides, J. Phys. D: Appl. Phys. 9 (1976) 1639-1646.

    32. [32]

      [32] D.S. Davis, T.S. Shalliday, Some optical properties of cadmium telluride, Phys. Rev. 118 (1960) 1020-1022.

    33. [33]

      [33] V. Raja, A.K. Sarma, V.V.R. Narasimha Rao, Optical properties of pure and doped PMMA-CO-P4VPNO polymer films, Mater. Lett. 57 (2003) 4678-4683.

    34. [34]

      [34] U.S. Park, Y.J. Hong, M.S. Oh, Fluorescence spectroscopy for local viscosity measurements in polyacrylonitrile (pan)-based polymer gel electrolytes, Electrochim. Acta 41 (1996) 849-855.

    35. [35]

      [35] V. Aravindan, P. Vickraman, T. Premkumar, Polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-based composite polymer electrolyte containing LiPF3(CF3CF2)3, J. Non-Cryst. Solids 354 (2008) 3451-3457.

    36. [36]

      [36] M. Ulaganathan, S. Rajendran, Studies on MWCNT-incorporated composite polymer electrolytes for electrochemical applications, Soft Mater. 8 (2010) 358-369.

    37. [37]

      [37] M. Ulaganathan, S. Sundar Pethaiah, S. Rajendran, Li-ion conduction in PVAc based polymer blend electrolytes for lithium battery applications, Mater. Chem. Phys. 129 (2011) 471-476.

  • 加载中
    1. [1]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    2. [2]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    3. [3]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    4. [4]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    5. [5]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    6. [6]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    7. [7]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    8. [8]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    9. [9]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

    10. [10]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    11. [11]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    12. [12]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    13. [13]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    14. [14]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    15. [15]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    16. [16]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    17. [17]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    18. [18]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    19. [19]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    20. [20]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

Metrics
  • PDF Downloads(0)
  • Abstract views(709)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return