Citation: Jian-Fei Liu, Yan Cao, Mao-Hua Yang, Xue-Jing Wang, Hui-Quan Li, Jian-Min Xing. Enhanced saccharification of lignocellulosic biomass with 1-allyl-3-methylimidazolium chloride (AmimCl) pretreatment[J]. Chinese Chemical Letters, ;2014, 25(11): 1485-1488. doi: 10.1016/j.cclet.2014.06.001 shu

Enhanced saccharification of lignocellulosic biomass with 1-allyl-3-methylimidazolium chloride (AmimCl) pretreatment

  • Corresponding author: Hui-Quan Li,  Jian-Min Xing, 
  • Received Date: 18 February 2014
    Available Online: 28 May 2014

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 21006118) (No. 21006118)

  • A simple and efficient method of enhancing biomass saccharification by microwave-assisted pretreatment with dimethyl sulfoxide/1-allyl-3-methylimidazolium chloride is proposed. Softwood (pine wood (PW)), hardwoods (poplar wood, catalpa bungi, and Chinese parasol), and agricultural wastes (rice straw, wheat straw, and corn stover (CS)) were exploited. Results showed that the best pretreatment effect was in PW with 54.3% and 31.7% dissolution and extraction ratios, respectively. The crystal form of cellulose in PW extract transformed from I to Ⅱ, and the contended cellulose ratio and glucose conversion ratio reached 85.1% and 85.4%, respectively. CS after steam explosion achieved a similar pretreating effect as PW, with its cellulose hydrolysis ratio reaching as high as 91.5% after IL pretreatment.
  • 加载中
    1. [1]

      [1] M.K. Bhat, S. Bhat, Cellulose degrading enzymes and their potential industrial applications, Biotechnol. Adv. 15 (1997) 583-620.

    2. [2]

      [2] X. Geng, W.A. Henderson, Pretreatment of corn stover by combining ionic liquid dissolution with alkali extraction, Biotechnol. Bioeng. 109 (2012) 84-91.

    3. [3]

      [3] P. Kumar, D.M. Barrett, M.J. Delwichea, P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Ind. Eng. Chem. Res. 48 (2009) 3713-3729.

    4. [4]

      [4] M.M. Fan, J.J. Zhou, Q.J. Han, P.B. Zhang, Effect of various functional groups on biodiesel synthesis from soybean oils by acidic ionic liquids, Chin. Chem. Lett. 23 (2012) 1107-1110.

    5. [5]

      [5] Q. Li, M. Yang, D. Wang, et al., Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes, Bioresour. Technol. 101 (2010) 3292-3294.

    6. [6]

      [6] F.R. Tao, C. Zhuang, Y.Z. Cui, J. Xu, Dehydration of glucose into 5-hydroxymethylfurfural in SO3H-functionalized ionic liquids, Chin. Chem. Lett. 25 (2014) 757- 761.

    7. [7]

      [7] K. Shill, S. Padmanabhan, Q. Xin, et al., Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle, Biotechnol. Bioeng. 108 (2011) 511-520.

    8. [8]

      [8] R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, Dissolution of cellulose with ionic liquids, J. Am. Chem. Soc. 124 (2002) 4974-4975.

    9. [9]

      [9] M. Mora-Pale, L. Meli, T.V. Doherty, R.J. Linhardt, J.S. Dordick, Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass, Biotechnol. Bioeng. 108 (2011) 1229-1245.

    10. [10]

      [10] S. Daneshjoo, N. Akbari, A.A. Sepahi, et al., Imidazolium chloride-based ionic liquid-assisted improvement of lipase activity in organic solvents, Eng. Life Sci. 11 (2011) 259-263.

    11. [11]

      [11] A. Brandt, M.J. Ray, T.Q. To, et al., Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures, Green Chem. 13 (2011) 2489- 2499.

    12. [12]

      [12] N. Sun, M. Rahman, Y. Qin, et al., Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate, Green Chem. 11 (2009) 646-655.

    13. [13]

      [13] B. Li, J. Asikkala, I. Filpponen, D.S. Argyropoulos, Factors affecting wood dissolution and regeneration of ionic liquids, Ind. Eng. Chem. Res. 49 (2010) 2477-2484.

    14. [14]

      [14] X.J. Wang, H.Q. Li, Y. Cao, Q. Tang, Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl), Bioresour. Technol. 102 (2011) 7959-7965.

    15. [15]

      [15] W. Masahisa, I. Masakazu, T. Ken, Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose Ⅱ hydrate form, Polym. Degrad. Stabil. 95 (2010) 543-548.

    16. [16]

      [16] J.Y. Zhao, H.Z. Chen, Correlation of porous structure,mass transfer and enzymatic hydrolysis of steam exploded corn stover, Chem. Eng. Sci. 104 (2013) 1036-1044.

    17. [17]

      [17] S. Besombes, K. Mazeau, The cellulose/lignin assembly assessed by molecular modeling. Part 2: seeking for evidence of organization of lignin molecules at the interface with cellulose, Plant Physiol. Biochem. 43 (2005) 277-286.

    18. [18]

      [18] K. Karimi, M. Shafiei, R. Kumar, Progress in physical and chemical pretreatment of lignocellulosic biomass, in: V.K. Gupta (Ed.), Biofuels and Biorefineries: Recent Developments, Springer Science Publishers, Germany, 2012, pp. 53-96.

    19. [19]

      [19] J. Li, G. Henriksson, G. Gö ran, Lignin depolymerisation-repolymerization and its critical role for delignification of aspen wood by steam explosion, Bioresour. Technol. 98 (2007) 3061-3068.

    20. [20]

      [20] C. Li, G. Cheng, V. Balan, et al., Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover, Bioresour. Technol. 102 (2011) 6928-6936.

    21. [21]

      [21] L. Segal, J.J. Creely, A.E. Martin, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J. 29 (1959) 786-794.

    22. [22]

      [22] A.C. O'Sullivan, Cellulose: the structure slowly unravels, Cellulose 4 (1997) 173- 207.

    23. [23]

      [23] R.C. Remsing, R.P. Swatloski, R.D. Rogers, G. Moyna, Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems, Chem. Commun. 12 (2006) 1271-1273.

  • 加载中
    1. [1]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    2. [2]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    3. [3]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    4. [4]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    5. [5]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    6. [6]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    7. [7]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    8. [8]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    9. [9]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    10. [10]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    11. [11]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    12. [12]

      Xuan LiuQing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670

    13. [13]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    14. [14]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    15. [15]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    16. [16]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    17. [17]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    18. [18]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    19. [19]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    20. [20]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

Metrics
  • PDF Downloads(0)
  • Abstract views(669)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return