Citation:
Jian-Fei Liu, Yan Cao, Mao-Hua Yang, Xue-Jing Wang, Hui-Quan Li, Jian-Min Xing. Enhanced saccharification of lignocellulosic biomass with 1-allyl-3-methylimidazolium chloride (AmimCl) pretreatment[J]. Chinese Chemical Letters,
;2014, 25(11): 1485-1488.
doi:
10.1016/j.cclet.2014.06.001
-
A simple and efficient method of enhancing biomass saccharification by microwave-assisted pretreatment with dimethyl sulfoxide/1-allyl-3-methylimidazolium chloride is proposed. Softwood (pine wood (PW)), hardwoods (poplar wood, catalpa bungi, and Chinese parasol), and agricultural wastes (rice straw, wheat straw, and corn stover (CS)) were exploited. Results showed that the best pretreatment effect was in PW with 54.3% and 31.7% dissolution and extraction ratios, respectively. The crystal form of cellulose in PW extract transformed from I to Ⅱ, and the contended cellulose ratio and glucose conversion ratio reached 85.1% and 85.4%, respectively. CS after steam explosion achieved a similar pretreating effect as PW, with its cellulose hydrolysis ratio reaching as high as 91.5% after IL pretreatment.
-
Keywords:
- Ionic liquid,
- Lignocellulosic biomass,
- Pretreatment,
- Saccharification
-
-
-
[1]
[1] M.K. Bhat, S. Bhat, Cellulose degrading enzymes and their potential industrial applications, Biotechnol. Adv. 15 (1997) 583-620.
-
[2]
[2] X. Geng, W.A. Henderson, Pretreatment of corn stover by combining ionic liquid dissolution with alkali extraction, Biotechnol. Bioeng. 109 (2012) 84-91.
-
[3]
[3] P. Kumar, D.M. Barrett, M.J. Delwichea, P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Ind. Eng. Chem. Res. 48 (2009) 3713-3729.
-
[4]
[4] M.M. Fan, J.J. Zhou, Q.J. Han, P.B. Zhang, Effect of various functional groups on biodiesel synthesis from soybean oils by acidic ionic liquids, Chin. Chem. Lett. 23 (2012) 1107-1110.
-
[5]
[5] Q. Li, M. Yang, D. Wang, et al., Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes, Bioresour. Technol. 101 (2010) 3292-3294.
-
[6]
[6] F.R. Tao, C. Zhuang, Y.Z. Cui, J. Xu, Dehydration of glucose into 5-hydroxymethylfurfural in SO3H-functionalized ionic liquids, Chin. Chem. Lett. 25 (2014) 757- 761.
-
[7]
[7] K. Shill, S. Padmanabhan, Q. Xin, et al., Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle, Biotechnol. Bioeng. 108 (2011) 511-520.
-
[8]
[8] R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, Dissolution of cellulose with ionic liquids, J. Am. Chem. Soc. 124 (2002) 4974-4975.
-
[9]
[9] M. Mora-Pale, L. Meli, T.V. Doherty, R.J. Linhardt, J.S. Dordick, Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass, Biotechnol. Bioeng. 108 (2011) 1229-1245.
-
[10]
[10] S. Daneshjoo, N. Akbari, A.A. Sepahi, et al., Imidazolium chloride-based ionic liquid-assisted improvement of lipase activity in organic solvents, Eng. Life Sci. 11 (2011) 259-263.
-
[11]
[11] A. Brandt, M.J. Ray, T.Q. To, et al., Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures, Green Chem. 13 (2011) 2489- 2499.
-
[12]
[12] N. Sun, M. Rahman, Y. Qin, et al., Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate, Green Chem. 11 (2009) 646-655.
-
[13]
[13] B. Li, J. Asikkala, I. Filpponen, D.S. Argyropoulos, Factors affecting wood dissolution and regeneration of ionic liquids, Ind. Eng. Chem. Res. 49 (2010) 2477-2484.
-
[14]
[14] X.J. Wang, H.Q. Li, Y. Cao, Q. Tang, Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl), Bioresour. Technol. 102 (2011) 7959-7965.
-
[15]
[15] W. Masahisa, I. Masakazu, T. Ken, Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose Ⅱ hydrate form, Polym. Degrad. Stabil. 95 (2010) 543-548.
-
[16]
[16] J.Y. Zhao, H.Z. Chen, Correlation of porous structure,mass transfer and enzymatic hydrolysis of steam exploded corn stover, Chem. Eng. Sci. 104 (2013) 1036-1044.
-
[17]
[17] S. Besombes, K. Mazeau, The cellulose/lignin assembly assessed by molecular modeling. Part 2: seeking for evidence of organization of lignin molecules at the interface with cellulose, Plant Physiol. Biochem. 43 (2005) 277-286.
-
[18]
[18] K. Karimi, M. Shafiei, R. Kumar, Progress in physical and chemical pretreatment of lignocellulosic biomass, in: V.K. Gupta (Ed.), Biofuels and Biorefineries: Recent Developments, Springer Science Publishers, Germany, 2012, pp. 53-96.
-
[19]
[19] J. Li, G. Henriksson, G. Gö ran, Lignin depolymerisation-repolymerization and its critical role for delignification of aspen wood by steam explosion, Bioresour. Technol. 98 (2007) 3061-3068.
-
[20]
[20] C. Li, G. Cheng, V. Balan, et al., Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover, Bioresour. Technol. 102 (2011) 6928-6936.
-
[21]
[21] L. Segal, J.J. Creely, A.E. Martin, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J. 29 (1959) 786-794.
-
[22]
[22] A.C. O'Sullivan, Cellulose: the structure slowly unravels, Cellulose 4 (1997) 173- 207.
-
[23]
[23] R.C. Remsing, R.P. Swatloski, R.D. Rogers, G. Moyna, Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems, Chem. Commun. 12 (2006) 1271-1273.
-
[1]
-
-
-
[1]
Tong Zhang , Xiaojing Liang , Licheng Wang , Shuai Wang , Xiaoxiao Liu , Yong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889
-
[2]
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
-
[3]
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
-
[4]
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
-
[5]
Luyu Zhang , Zirong Dong , Shuai Yu , Guangyue Li , Weiwen Kong , Wenjuan Liu , Haisheng He , Yi Lu , Wei Wu , Jianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101
-
[6]
Yixia Zhang , Caili Xue , Yunpeng Zhang , Qi Zhang , Kai Zhang , Yulin Liu , Zhaohui Shan , Wu Qiu , Gang Chen , Na Li , Hulin Zhang , Jiang Zhao , Da-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196
-
[7]
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
-
[8]
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
-
[9]
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
-
[10]
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
-
[11]
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
-
[12]
Xuan Liu , Qing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670
-
[13]
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
-
[14]
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
-
[15]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[16]
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
-
[17]
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
-
[18]
Yuchen Wang , Zhenhao Xu , Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418
-
[19]
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
-
[20]
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(669)
- HTML views(2)