Citation: Feng Li, Chun-Shan Lu, Xiao-Nian Li. The effect of the amount of ammonia on the Cu0/Cu+ ratio of Cu/SiO2 catalyst for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chinese Chemical Letters, ;2014, 25(11): 1461-1465. doi: 10.1016/j.cclet.2014.05.050 shu

The effect of the amount of ammonia on the Cu0/Cu+ ratio of Cu/SiO2 catalyst for the hydrogenation of dimethyl oxalate to ethylene glycol

  • Corresponding author: Chun-Shan Lu, 
  • Received Date: 8 April 2014
    Available Online: 19 May 2014

  • The effect of the amount of precipitant ammonia on the Cu0/Cu+ ratio of Cu/SiO2 prepared by the deposition-precipitation method is investigated. Species at different preparation stages, resulted from the amount of ammonia used, are identified by the XRD and FTIR techniques. Chrysocolla together with either copper nitrate hydroxide or copper hydroxide coexist in the uncalcined catalysts. Upon calcination, the latter two species are converted to CuO particles while chrysocolla remains. Following reduction, CuO is transformed to metallic Cu and chrysocolla is converted to Cu2O. The value of Cu0/Cu+ ratio can be evaluated using the peak areas in their TPR profiles. Hydrogenation of dimethyl oxalate (DMO) to ethylene glycol (EG) shows that the selectivity of EG depends on the Cu0/Cu+ ratio. Catalyst prepared with the addition of ammonia solution at n(NH3)/n(Cu2+)=0.9 for precipitation-deposition gains a more suitable Cu0/Cu+ ratio upon reduction and thus has a higher selectivity for EG.
  • 加载中
    1. [1]

      [1] L.F. Chen, P.J. Guo, M.H. Qiao, et al., Cu/SiO2 catalysts prepared by the ammoniaevaporation method: texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 257 (2008) 172-180.

    2. [2]

      [2] H.R. Yue, Y.J. Zhao, X.B. Ma, et al., Ethylene glycol: properties, synthesis, and applications, Chem. Soc. Rev. 41 (2012) 4218-4244.

    3. [3]

      [3] K. Fujii, M. Matsuda, K. Mizutare, et al. Process for continuously preparing ethylene glycol, US 4453026, 1984.

    4. [4]

      [4] X.G. Zhao, X.L. Lvy, H.G. Zhao, et al., Study on Pd/a-Al2O3 catalyst for vapor-phase coupling reaction of CO with CH3ONO to (CH3OOC)2, Chin. J. Catal. 25 (2004) 125-128.

    5. [5]

      [5] L.R. Zehner, R. Warren Lenton, Process for the preparation of ethylene glycol, US 4112245 A, 1978.

    6. [6]

      [6] U. Matteoli, G. Menchi, M. Bianchi, et al., Selective reduction of dimethyl oxalate by ruthenium carbonyl carboxylates in homogeneous phase Part IV, J. Mol. Catal. 64 (1991) 257-267.

    7. [7]

      [7] H.T. Teunissen, C.J. Elsevier, Ruthenium catalysed hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Commun. 12 (1997) 667-668.

    8. [8]

      [8] A.Y. Yin, X.Y. Guo, W.L. Dai, et al., High activity and selectivity of Ag/SiO2 catalyst for hydrogenation of dimethyl oxalate, Chem. Commun. 46 (2010) 4348-4350.

    9. [9]

      [9] Z. He, H.Q. Lin, P. He, et al., Effect of boric oxide doping on the stability and activity of a Cu/SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 277 (2011) 54-63.

    10. [10]

      [10] S. Zhao, H.R. Yue, Y.J. Zhao, et al., Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: enhanced stability with boron dopant, J. Catal. 297 (2013) 142-150.

    11. [11]

      [11] A.Y. Yin, C. Wen, X.Y. Guo, et al., Influence of Ni species on the structural evolution of Cu/SiO2 catalyst for the chemoselective hydrogenation of dimethyl oxalate, J. Catal. 280 (2011) 77-88.

    12. [12]

      [12] B.W.Wang, Q. Xu, H. Song, G.H. Xu, Synthesis of methyl glycolate by hydrogenation of dimethyl oxalate over Cu-Ag/SiO2 catalyst, J. Nat. Gas Chem. 16 (2007) 78-80.

    13. [13]

      [13] B.W. Wang, X. Zhao, Q. Xu, G.H. Xu, Preparation and characterization of Cu/SiO2 catalyst and its catalytic activity for hydrogenation of diethyl oxalate to ethylene glycol, Chin. J. Catal. 29 (2008) 275-280.

    14. [14]

      [14] A.Y. Yin, X.Y. Guo, K.N. Fan, W.L. Dai, Ion-exchange temperature effect on Cu/HMS catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol, Chem- CatChem 2 (2010) 206-213.

    15. [15]

      [15] A.Y. Yin, X.Y. Guo, K.N. Fan, et al., Influence of copper precursors on the structure evolution and catalytic performance of Cu/HMS catalysts in the hydrogenation of dimethyl oxalate to ethylene glycol, Appl. Catal. A 377 (2010) 128-133.

    16. [16]

      [16] C. Wen, A.Y. Yin, Y.Y. Cui, et al., Enhanced catalytic performance for SiO2-TiO2 binary oxide supported Cu-based catalyst in the hydrogenation of dimethyloxalate, Appl. Catal. A 458 (2013) 82-89.

    17. [17]

      [17] X.B. Ma, H.W. Chi, H.R. Yue, et al., Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu/MCM-41 catalysts, AIChE J. 59 (2013) 2530-2539.

    18. [18]

      [18] J.L. Gong, H.R. Yue, Y.J. Zhao, et al., Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites, J. Am. Chem. Soc. 134 (2012) 13922-13925.

    19. [19]

      [19] S.R. Wang, X.B. Li, Q.Q. Yin, et al., Highly active and selective Cu/SiO2 catalysts prepared by the urea hydrolysis method in dimethyl oxalate hydrogenation, Catal. Commun. 12 (2011) 1246-1250.

    20. [20]

      [20] L.M. He, X.C. Chen, J.S. Ma, et al., Characterization and catalytic performance of sol-gel derived Cu/SiO2 catalysts for hydrogenolysis of diethyl oxalate to ethylene glycol, J. Sol-Gel Sci. Technol. 55 (2010) 285-292.

    21. [21]

      [21] X.Y. Guo, A.Y. Yin, W.L. Dai, et al., One pot synthesis of ultra-high copper contented Cu/SBA-15 material as excellent catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol, Catal. Lett. 132 (2009) 22-27.

    22. [22]

      [22] S.R. Wang, Q.Q. Yin, X.B. Li, Catalytic performance and texture of TEOS based Cu/ SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Res. Chin. Univ. 28 (2012) 119-123.

    23. [23]

      [23] C. Carlini, D.G. Marco, M. Mario, et al., Selective synthesis of isobutanol by means of the Guerbet reaction: Part 2. Reaction of methanol/ethanol and methanol/ ethanol/n-propanol mixtures over copper based/MeONa catalytic systems, J. Mol. Catal. A: Chem. 200 (2003) 137-146.

    24. [24]

      [24] S. Veibel, J.I. Nielsen, On the mechanism of the Guerbet reaction, Tetrahedron 23 (1967) 1723-1733.

    25. [25]

      [25] A.Y. Yin, X.Y. Guo, W.L. Dai, et al., The nature of active copper species in Cu/HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: new insights on the synergetic effect between Cu0 and Cu+, J. Phys. Chem. C 113 (2009) 11003-11013.

    26. [26]

      [26] M.A. Kohler, H.E. Curry-Hyde, A.E. Hughes, et al., The structure of Cu/SiO2 catalysts prepared by the ion-exchange technique, J. Catal. 108 (1987) 323-333.

    27. [27]

      [27] B. Zhang, S.G. Hui, S.H. Zhang, et al., Effect of copper loading on texture, structure and catalytic performance of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol, J. Nat. Gas Chem. 21 (2012) 563-570.

    28. [28]

      [28] T. Toupance, M. Kermarec, C. Louis, Metal particle size in silica-supported copper catalysts. Influence of the conditions of preparation and of thermal pretreatments, J. Phys. Chem. B 104 (2000) 965-972.

    29. [29]

      [29] T. Toupance, M. Kermarec, J.F. Lambert, et al., Conditions of formation of copper phyllosilicates in silica-supported copper catalysts prepared by selective adsorption, J. Phys. Chem. B 106 (2002) 2277-2286.

    30. [30]

      [30] L. Trouillet, T. Toupance, F. Villain, et al., In situ characterization of the coordination sphere of Cu(Ⅱ) complexes supported on silica during the preparation of Cu/SiO2 catalysts by cation exchange, PCCP 2 (2000) 2005-2014.

    31. [31]

      [31] H. Tominaga, M. Kaneko, Y. Ono, Cation exchange of surface protons on silica gel with cupric ions, J. Catal. 50 (1977) 400-406.

    32. [32]

      [32] Y.K. Leong, Yield stress and zeta potential of nanoparticulate silica dispersions under the influence of adsorbed hydrolysis products of metal ions-Cu(Ⅱ), Al(Ⅲ) and Th(IV), J. Colloid Interface Sci. 292 (2005) 557-566.

    33. [33]

      [33] C.J.G. Van Der Grift, P.A. Elberse, A. Mulder, et al., Preparation of silica-supported copper catalysts by means of deposition-precipitation, Appl. Catal. 59 (1990) 275-289.

    34. [34]

      [34] M.A. Kohler, J.C. Lee, D.L. Trimm, et al., Preparation of Cu/SiO2 catalysts by the ionexchange technique, Appl. Catal. 31 (1987) 309-321.

  • 加载中
    1. [1]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    2. [2]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    3. [3]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    4. [4]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    5. [5]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    6. [6]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    7. [7]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    8. [8]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    9. [9]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    10. [10]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    11. [11]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    12. [12]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    13. [13]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    14. [14]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    15. [15]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    16. [16]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    17. [17]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    18. [18]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    19. [19]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    20. [20]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

Metrics
  • PDF Downloads(0)
  • Abstract views(669)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return