Citation: Gui-Jiang Zhang, Xin Zhou, Xiao-Huan Zang, Zhi Li, Chun Wang, Zhi Wang. Analysis of nitrobenzene compounds in water and soil samples by graphene composite-based solid-phase microextraction coupled with gas chromatography-mass spectrometry[J]. Chinese Chemical Letters, ;2014, 25(11): 1449-1454. doi: 10.1016/j.cclet.2014.05.049 shu

Analysis of nitrobenzene compounds in water and soil samples by graphene composite-based solid-phase microextraction coupled with gas chromatography-mass spectrometry

  • Corresponding author: Zhi Wang, 
  • Received Date: 18 March 2014
    Available Online: 26 May 2014

    Fund Project: Financial support from the National Natural Science Foundation of China (No. 31171698) (No. 31171698) the Innovation Research Group Program of Department of Education of Hebei for Hebei Provincial Universities (No. LJRC009) (No. LJRC009)the Natural Science Foundation of Hebei Province (No. B2012204028) are gratefully acknowledged. (No. B2012204028)

  • In this work, solid-phase microextraction coupled with gas chromatography-mass spectrometry was developed to determine trace levels of nitrobenzene compounds in water and soil samples. Graphene was chosen as the extractionmaterial and its composite was coated on a stainless steel wire through sol- gel technique for the solid phase microextraction. The key parameters influencing the extraction efficiency were optimized. Under the optimal conditions, the linearity for the compounds was observed in the range of 0.02-15.0 μg/L for water samples, and 0.2-60.0 μg/kg for soil samples, with the correlation coefficients (r) of 0.9966-0.9987. The limits of detection of the method were 0.0025-0.005 μg/L for water samples, and 0.02-0.04 μg/kg for soil samples. The recoveries for the spiked samples were in the range of 72.0%-113.2%, and the precision, expressed as the relative standard deviations, was less than 12.1%.
  • 加载中
    1. [1]

      [1] L. Saghatforoush, M. Hasanzadeh, N. Shadjou, Polystyrene-graphene oxide modified glassy carbon electrode as a new class of polymeric nanosensors for electrochemical determination of histamine, Chin. Chem. Lett. 25 (2014) 655-658.

    2. [2]

      [2] C. Wang, S. de Rooy, C.F. Lu, et al., An immobilized graphene oxide stationary phase for open-tubular capillary electrochromatography, Electrophoresis 34 (2013) 1197-1202.

    3. [3]

      [3] C. Feng, H.Y. Zhang, N.Z. Shang, S.T. Gao, C. Wang, Magnetic graphene nanocomposite as an efficient catalyst for hydrogenation of nitroarenes, Chin. Chem. Lett. 24 (2013) 539-541.

    4. [4]

      [4] Z.H. Wang, Q. Han, J.F. Xia, et al., Graphene-based solid-phase extraction disk for fast separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples, J. Sep. Sci. 36 (2013) 1834-1842.

    5. [5]

      [5] H. Zhang, W.P. Low, H.K. Lee, Evaluation of sulfonated graphene sheets as sorbent for micro-solid-phase extraction combined with gas chromatography-mass spectrometry, J. Chromatogr. A 1233 (2012) 16-21.

    6. [6]

      [6] X.X. Ma, J.T. Wang, M. Sun, et al., Magnetic solid-phase extraction of neonicotinoid pesticides from pear and tomato samples using graphene grafted silica-coated Fe3O4 as the magnetic adsorbent, Anal. Methods 5 (2013) 2809-2815.

    7. [7]

      [7] W.N. Wang, R.Y. Ma, Q.H. Wu, C. Wang, Z. Wang, Magnetic microsphere-confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with high performance liquid chromatographyfluorescence analysis, J. Chromatogr. A 1293 (2013) 20-27.

    8. [8]

      [8] L.L. Xu, J.J. Feng, J.B. Li, X. Liu, S.X. Jiang, Graphene oxide bonded fused-silica fiber for solid-phase microextraction-gas chromatography of polycyclic aromatic hydrocarbons in water, J. Sep. Sci. 35 (2012) 93-100.

    9. [9]

      [9] J. Zou, X.H. Song, J.J. Ji, et al., Polypyrrole/graphene composite-coated fiber for the solid-phase microextraction of phenols, J. Sep. Sci. 34 (2011), 2765-2772.

    10. [10]

      [10] C.L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem. 62 (1990) 2145-2148.

    11. [11]

      [11] D. Vuckovic, High-throughput solid-phase microextraction in multi-well-plate format, TrAC Trends Anal. Chem. 45 (2013) 136-153.

    12. [12]

      [12] A. Mehdinia, M.O. Aziz-Zanjani, Recent advances in nanomaterials utilized in fiber coatings for solid-phase microextraction, TrAC Trends Anal. Chem. 42 (2013) 205-215.

    13. [13]

      [13] J.J. Feng, M. Sun, L.L. Xu, et al., Novel double-confined polymeric ionic liquids as sorbents for solid-phase microextraction with enhanced stability and durability in high-ionic-strength solution, J. Chromatogr. A 1268 (2012) 16-21.

    14. [14]

      [14] J. Gonzalez-Alvarez, D. Blanco-Gomis, P. Arias-Abrodo, et al., Analysis of beer volatiles by polymeric imidazolium-solid phase microextraction coatings: synthesis and characterization of polymeric imidazolium ionic liquids, J. Chromatogr. A 1305 (2013) 35-40.

    15. [15]

      [15] J. Jia, X.J. Liang, L.C. Wang, et al., Nanoporous array anodic titanium-supported copolymeric ionic liquids as high performance solid-phase microextraction sorbents for hydrogen bonding compounds, J. Chromatogr. A 1320 (2013) 1-9.

    16. [16]

      [16] N. Chang, Z.Y. Gu, H.F. Wang, X.P. Yan, Metal organic-framework-based tandem molecular sieves as a dual platform for selective microextraction and highresolution gas chromatographic separation of n-alkanes in complex matrixes, Anal. Chem. 83 (2011) 7094-7101.

    17. [17]

      [17] L.Q. Yu, X.P. Yan, Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction, Chem. Commun. 49 (2013) 2142-2144.

    18. [18]

      [18] X.Z. Du, Y.R. Wang, X.J. Tao, H.L. Deng, An approach to application of mesoporous hybrid as a fiber coating of solid-phase microextraction, Anal. Chim. Acta 543 (2005) 9-16.

    19. [19]

      [19] N. Rastkari, R. Ahmadkhaniha, N. Samadi, A. Shafiee, M. Yunesian, Single-walled carbon nanotubes as solid-phase microextraction adsorbent for the determination of low-level concentrations of butyltin compounds in seawater, Anal. Chim. Acta 662 (2010) 90-96.

    20. [20]

      [20] N. Rastkari, R. Ahmadkhaniha, M. Yunesian, L. Baleh, A. Mesdaghinia, Sensitive determination of bisphenol A and bisphenol F in canned food using a solid-phase microextraction fibre coated with single-walled carbon nanotubes before GC/MS, Food Addit. Contam. 27 (2010) 1460-1468.

    21. [21]

      [21] J.M. Chen, J. Zou, J.B. Zeng, et al., Preparation and evaluation of graphene-coated solid-phase microextraction fiber, Anal. Chim. Acta 678 (2010) 44-49.

    22. [22]

      [22] Y.B. Luo, B.F. Yuan, Q.W. Yu, Y.Q. Feng, Substrateless graphene fiber: a sorbent for solid-phase microextraction, J. Chromatogr. A 1268 (2012) 9-15.

    23. [23]

      [23] V.K. Ponnusamy, J.F. Jen, A novel graphene nanosheets coated stainless steel fiber for microwave assisted headspace solid phase microextraction of organochlorine pesticides in aqueous samples followed by gas chromatography with electron capture detection, J. Chromatogr. A 1218 (2011) 6861-6868.

    24. [24]

      [24] H. Zhang, H.K. Lee, Plunger-in-needle solid-phase microextraction with graphene- based sol-gel coating as sorbent for determination of polybrominated diphenyl ethers, J. Chromatogr. A 1218 (2011) 4509-4516.

    25. [25]

      [25] Q.H. Wu, C. Feng, G.Y. Zhao, C. Wang, Z. Wang, Graphene-coated fiber for solidphase microextraction of triazine herbicides in water samples, J. Sep. Sci. 35 (2012) 193-199.

    26. [26]

      [26] S.L. Zhang, Z. Du, G.K. Li, Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction, Anal. Chem. 83 (2011) 7531-7541.

    27. [27]

      [27] X. Li, J.M. Chen, L.C. Du, Analysis of chloro- and nitrobenzenes in water by a simple polyaniline-based solid-phase microextraction coupled with gas chromatography, J. Chromatogr. A 1140 (2007) 21-28.

    28. [28]

      [28] X.T. Peng, X. Zhao, Y.Q. Feng, Preparation of phenothiazine bonded silica gel as sorbents of solid phase extraction and their application for determination of nitrobenzene compounds in environmental water by gas chromatography-mass spectrometry, J. Chromatogr. A 1218 (2011) 9314-9320.

    29. [29]

      [29] Q.H. Wu, G.Y. Zhao, C. Feng, C. Wang, Z. Wang, Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples, J. Chromatogr. A 1218 (2011) 7936-7942.

    30. [30]

      [30] M. Tankiewicz, C. Morrison, M. Biziuk, Application and optimization of headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography- flame-ionization detector (GC-FID) to determine products of the petroleum industry in aqueous samples, Microchem. J. 108 (2013) 117-123.

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    3. [3]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    4. [4]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    5. [5]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    6. [6]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    7. [7]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    8. [8]

      Huifang MaTao XuSaifei YuanShujuan LiJiayao WangYuping ZhangHao RenShulai Lei . Interlayer interactions and electron transfer effects on sodium adsorption on 2D heterostructures surfaces. Chinese Chemical Letters, 2025, 36(8): 110219-. doi: 10.1016/j.cclet.2024.110219

    9. [9]

      Shiyan AiYaning XuHui ZhouZiwei CuiTiantian WuDan Tian . Superelastic and ultralight covalent organic framework composite aerogels modified with different functional groups for ultrafast adsorbing organic pollutants in water. Chinese Chemical Letters, 2025, 36(10): 110761-. doi: 10.1016/j.cclet.2024.110761

    10. [10]

      Jiawen ZhuYingge HaoZhen SongHuina ZhouYoumei WangLing YanMinghua Lu . Synthesis of mesopore-rich hollow carbon nanospheres as headspace solid-phase microextraction coating to extract PAHs from water and honey. Chinese Chemical Letters, 2025, 36(12): 111290-. doi: 10.1016/j.cclet.2025.111290

    11. [11]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    12. [12]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    13. [13]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    14. [14]

      Zelin Wang Gang Liu Mengran Wang Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . Application of Instrumental Analysis in the Detection of Organic Components in Liquor. University Chemistry, 2025, 40(11): 318-326. doi: 10.12461/PKU.DXHX202502077

    15. [15]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    16. [16]

      Hao SunXiaoxue LiBaoyu WuKai ZhuYinyi GaoTianzeng BaoHongbin WuDianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041

    17. [17]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    18. [18]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    19. [19]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    20. [20]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

Metrics
  • PDF Downloads(0)
  • Abstract views(1171)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return