Citation: Shuang Xia, Yue Feng, Jia-Gao Cheng, Hai-Bin Luo, Zhong Li, Zheng-Ming Li. QAAR exploration on pesticides with high solubility:An investigation on sulfonylurea herbicide dimers formed through π-π stacking interactions[J]. Chinese Chemical Letters, ;2014, 25(7): 937-977. doi: 10.1016/j.cclet.2014.05.046 shu

QAAR exploration on pesticides with high solubility:An investigation on sulfonylurea herbicide dimers formed through π-π stacking interactions

  • Corresponding author: Jia-Gao Cheng,  Zhong Li, 
  • Received Date: 31 March 2014
    Available Online: 13 May 2014

    Fund Project: We thanks for the financial supports from National Key Technology R&D Program of China (No. 2011BAE06B05) (No. 2011BAE06B05) National Natural Science Foundation of China (No. 21172070) (No. 21172070) National High Technology Research Development Program of China (No. 2011AA10A207) (No. 2011AA10A207) National Basic Research Program of China (No. 2010CB126100) (No. 2010CB126100)

  • Bioactive compounds could form aggregates that influence the bio-interactive processes. In this letter, based on π-π stacking models, quantitative aggregation-activity relationship (QAAR) studies were carried out on a series of sulfonylurea herbicides with good solubility. Four QAAR/QSAR models were constructed, which indicated that the bioactivity may strongly depend on both the characters of the dimeric aggregates and the monomer. The QAAR approach based on dimer-aggregates was also applicable for the highly water-soluble sulfonylurea herbicides that can form π-π stacking interactions. It was expected that the QAAR studies based on molecular aggregation state would be applied to other pesticide systems.
  • 加载中
    1. [1]

      [1] S.L. McGovern, E. Caselli, N. Grigorieff, B.K. Shoichet, A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening, J. Med. Chem. 45 (2002) 1712-1722.

    2. [2]

      [2] J. Seidler, S.L. McGovern, T.N. Doman, B.K. Shoichet, Identification and prediction of promiscuous aggregating inhibitors among known drugs, J. Med. Chem. 46 (2003) 4477-4486.

    3. [3]

      [3] S.C. Owen, A.K. Doak, P. Wassam, M.S. Shoichet, B.K. Shoichet, Colloidal aggregation affects the efficacy of anticancer drugs in cell culture, ACS Chem. Biol. 7 (2012) 1429-1435.

    4. [4]

      [4] K.E.D. Coan, D.A. Maltby, A.L. Burlingame, B.K. Shoichet, Promiscuous aggregatebased inhibitors promote enzyme unfolding, J. Med. Chem. 52 (2009) 2067-2075.

    5. [5]

      [5] Y.V. Frenkel, A.D. Clark Jr., K. Das, et al., Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability, J. Med. Chem. 48 (2005) 1974-1983.

    6. [6]

      [6] B. Vioque, J.M. Castellano, In vivo and in vitro 1-aminocyclopropane-1-carboxylic acid oxidase activity in pear fruit: role of ascorbate and inactivation during catalysis, J. Agric. Food Chem. 46 (1998) 1706-1711.

    7. [7]

      [7] T. Yokozawa, E. Dong, T. Nakagawa, et al., In vitro and in vivo studies on the radical-scavenging activity of tea, J. Agric. Food Chem. 46 (1998) 2143-2150.

    8. [8]

      [8] F. Fan, Z. Li, X.Y. Xu, X.H. Qian, Quantitative aggregation-activity relationship (QAAR): supermolecular view, dimer as the simplest aggregation state and monomolecule, QSAR Comb. Sci. 26 (2007) 737-743.

    9. [9]

      [9] F. Fan, J.G. Cheng, Z. Li, X.Y. Xu, X.H. Qian, Novel dimer based descriptors with solvational computation for QSAR study of oxadiazoylbenzoyl-ureas as novel insect-growth regulators, J. Comput. Chem. 31 (2010) 586-591.

    10. [10]

      [10] R.A. LaRossa, J.V. Schloss, The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium, J. Biol. Chem. 259 (1984) 8753-8757.

    11. [11]

      [11] G. Levitt, Synthesis and Chemistry of Agrochemicals II, American Chemical Society, Washington, 1991.

    12. [12]

      [12] G.Z. Ye, Z.J. Fan, Z.M. Li, et al., Synthesis and herbicidal activity of new sulfonylurea derivatives, Chem. J. Chin. Univ. -Chin. 24 (2003) 1599-1603.

    13. [13]

      [13] J.G. Wang, N. Ma, B.L. Wang, et al., Synthesis, crystal structure and biological activity of N-(4-Methyl-pyrimidin-2-yl)-N'-2-(nitrophenylsulfonyl)urea and its docking with yeast AHAS, Chin. J. Org. Chem. 26 (2006) 648-652.

    14. [14]

      [14] B.L. Wang, N. Ma, J.G. Wang, et al., Synthesis and dimeric crystal structure of sulfonylurea compound N-[2-(4-methyl)pyrimidinyl]-N'-2-methoxycarbonylbenzene sulfonylurea, Chin. J. Struct. Chem. 23 (2004) 783-787.

    15. [15]

      [15] J.G. Wang, Z.M. Li, N. Ma, et al., Structure-activity relationships for a new family of sulfonylurea herbicides, J. Comput. Aid. Mol. Des. 19 (2005) 801-820.

    16. [16]

      [16] L. Pan, Z. Liu, Y.W. Chen, Y.H. Li, Z.M. Li, Design, synthesis and serbicidal activity of novel sulfonylureas containing monosubstituted pyrimidine moiety, Chem. J. Chin. Univ. 34 (2013) 1416-1422.

    17. [17]

      [17] Y.W. He, C.W. Niu, X. Wen, Z. Xi, Molecular drug resistance prediction for acetohydroxyacid synthase mutants against chlorsulfuron using MB-QSAR, Chin. J. Chem. 31 (2013) 1171-1180.

    18. [18]

      [18] K. Roy, S. Paul, Docking and 3D-QSAR studies of acetohydroxy acid synthase inhibitor sulfonylurea derivatives, J. Mol. Model. 16 (2010) 951-964.

    19. [19]

      [19] M. Bitencourt, M.P. Freitas, MIA-QSAR evaluation of a series of sulfonylurea herbicides, Pest. Manag. Sci. 64 (2008) 800-807.

    20. [20]

      [20] Z. Xi, Z.H. Yu, Z.W. Niu, S.R. Ban, G.F. Yang, Development of a general quantumchemical descriptor for steric effects: density functional theory based QSAR study of herbicidal sulfonylurea analogues, J. Comput. Chem. 27 (2006) 1571-1576.

    21. [21]

      [21] S.R. Ban, C.W. Niu, W.B. Chen, et al., Interaction and CoMFA studies on A. thaliana acetohydroxyacid synthase by sulfonylureas, Chem. J. Chin. Univ. 28 (2007) 543-547.

    22. [22]

      [22] J.L. Li, Y.C. Hang, C.Y. Geng, et al., QSAR studies on herbicidal activities of sulfonylurea compounds, Chem. J. Chin. Univ. 28 (2007) 539-542.

    23. [23]

      [23] B.L. Wang, N. Ma, J.G. Wang, et al., 3D-QSAR analysis of new sulfonylureas related to their herbicidal activity, Acta Phys. -Chim. Sin. 20 (2004) 577-581.

    24. [24]

      [24] G.F. Yang, H.Y. Liu, H.Z. Yang, QSAR and 3D-QSAR analysis of structurally diverse ALS inhibitors: sulfonylureas and triazolopyrimidine-2-sulfonamides, Pestic. Sci. 55 (1999) 1143-1150.

    25. [25]

      [25] Z.H. Yu, C.W. Niu, S.R. Ban, X. Wen, Z. Xi, Study on structure-activity relationship of mutation-dependent herbicide resistance acetohydroxyacid synthase through 3D-QSAR and mutation, Chin. Sci. Bull. 52 (2007) 1929-1941.

    26. [26]

      [26] Y. Ma, L. Jiang, Z.M. Li, C.M. Lai, 3D-QSAR study on N-(4-substituted pyrimidin-2-yl) benzyl sulfonylurea and phenoxy sulfonylurea, Chem. J. Chin. Univ. 25 (2004) 2031-2033.

    27. [27]

      [27] X.H. Qian, Quantitative studies on structure-activity relationship of sulfonylurea and benzoylphenylurea type pesticides and their substituents' bioisosterism using synthons' activity contribution, J. Agric. Food Chem. 47 (1999) 4415-4418.

    28. [28]

      [28] Z. Wang, J.J. Ye, R. Wu, et al., Bi-aryl rotation in phenyl-dihydroimidazoquinoline catalysts for kinetic resolution of arylalkyl carbinols, Catal. Sci. Technol. (2014), http://dx.doi.org/10.1039/C3CY00904A.

    29. [29]

      [29] L. Ståhle, S. Wold, Multivariate data analysis and experimental design in biomedical research, Prog. Med. Chem. 25 (1988) 291-338.

    30. [30]

      [30] J.J.P. Stewart, Optimization of parameters for semiempirical methods I. Method, J. Comput. Chem. 10 (1989) 209-220.

    31. [31]

      [31] J.J.P. Stewart, Optimization of parameters for semiempirical methods II. Applications, J. Comput. Chem. 10 (1989) 221-264.

    32. [32]

      [32] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, John Wiley & Sons, New York, 2009.

    33. [33]

      [33] Y. Duan, P.A. Kollman, Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution, Science 282 (1998) 740-744.

    34. [34]

      [34] T.J. Hou, K. Xia, W. Zhang, X.J. Xu, ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach, J. Chem. Inf. Comp. Sci. 44 (2004) 266-275.

    35. [35]

      [35] J. Sangster, Octanol-water partition coefficients: fundamentals and physical chemistry, Eur. J. Med. Chem. 32 (1997), 842.

    36. [36]

      [36] T.J. Hou, X.J. Xu, ADME evaluation in drug discovery. 2. Prediction of partition coefficient by atom-additive approach based on atom-weighted solvent accessible surface areas, J. Chem. Inf. Comp. Sci. 43 (2003) 1058-1067.

    37. [37]

      [37] G. Cruciani, P. Crivori, P.A. Carrupt, B. Testa, Molecular fields in quantitative structure-permeation relationships: the VolSurf approach, J. Mol. Struct. (Theochem.) 503 (2000) 17-30.

  • 加载中
    1. [1]

      Lulu CaoYikun LiDongxiang ZhangShuai YueRong ShangXin-Dong JiangJianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735

    2. [2]

      Jing Guo . New electrolyte concept: Compact ion-pair aggregate electrolyte. Chinese Chemical Letters, 2025, 36(4): 110512-. doi: 10.1016/j.cclet.2024.110512

    3. [3]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    4. [4]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    5. [5]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    6. [6]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

Metrics
  • PDF Downloads(0)
  • Abstract views(643)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return