Citation: Sheng-Peng Wang, Yuan-Feng Tong, Dong-Mei Wang, Nan Wang, Zheng Yan, Ping Huang, Song Wu. Synthesis and cytotoxicity evaluation of a novel justicidin G analogue and its phosphate ester[J]. Chinese Chemical Letters, ;2014, 25(7): 1044-1046. doi: 10.1016/j.cclet.2014.05.042 shu

Synthesis and cytotoxicity evaluation of a novel justicidin G analogue and its phosphate ester

  • Corresponding author: Yuan-Feng Tong,  Song Wu, 
  • Received Date: 31 March 2014
    Available Online: 21 May 2014

    Fund Project: the Union Youth Science & Research Fund (No. 3332013074) for financial support. (No. 2012ZX09301002-001)

  • The novel justicidin G analogue 13 and its phosphate ester 15 were synthesized as potential anticancer agents in several steps starting from commercially available methyl gallate and veratraldehyde. The cytotoxicity of the intermediates was tested against HCT-8, BEL-7402, KETR3, HELA, BGC-823, KB and MCF-7 cell lines by the MTT test, and compound 15 exhibited significant cytotoxicity in HELA and KB cell lines.
  • 加载中
    1. [1]

      [1] C.C. Chen, W.C. Hsin, Y.L. Huang, Six new diarylbutane lignans from Justicia procumbens, J. Nat. Prod. 61 (1998) 227-229.

    2. [2]

      [2] M.H. Yang, J. Wu, F. Cheng, Y. Zhou, Complete assignments of 1H and 13C NMR data for seven arylnaphthalide lignans from Justicia procumbens, Magn. Reson. Chem. 44 (2006) 727-730.

    3. [3]

      [3] X.L. He, P. Zhang, X.Z. Dong, et al., JR6, a new compound isolated from Justicia procumbens, induces apoptosis in human bladder cancer EJ cells through caspasedependent pathway, J. Ethnopharmacol. 144 (2012) 284-292.

    4. [4]

      [4] F. Qiu, S.J. Zhou, S.J. Fu, et al., LC-ESI-MS/MS analysis and pharmacokinetics of 6'-hydroxy justicidin A, a potential antitumor active component isolated from Justicia procumbens, in rats, J. Pharm. Biomed. 70 (2012) 539-543.

    5. [5]

      [5] P. Zhang, W.Q. Zhou, X.Z. Dong, M.H. Yang, M.G. Bi, Effect of 6'-hydroxy justicidin A on cell proliferation and redox system in tumor cells, Chin. J. Pharmacol. Toxicol. 24 (2010) 207-213.

    6. [6]

      [6] P.Zhang, X.Z.Dong, Y.T.Zhou,M.H.Yang,M.G. Bi,Mechanismof JR6 to inducehuman bladder cancer EJ cells apoptosis, Chin. Pharmacol. Bull. 25 (2009) 173-174.

    7. [7]

      [7] J.Y. Deng, M.H. Yang, M.G. Bi, In vitro anti-tumor mechanism of JR6 on human colon cancer cell HT-29, Chin. Pharmacol. Bull. 25 (2009) 190-191.

    8. [8]

      [8] (a) P. Allevi, M. Anastasia, P. Ciuffreda, E. Bigatti, Stereoselective glucosidation of podophyllum lignans. A new simple synthesis of etoposide, J. Org. Chem. 58 (1993) 4175-4178; (b) M.G. Saulnier, D.R. Langley, J.F. Kadow, Synthesis of etoposide phosphate, BMY-40481: a water-soluble clinically active prodrug of etoposide, Bioorg. Med. Chem. Lett. 4 (1994) 2567-2572.

    9. [9]

      [9] L. Xiong, M.G. Bi, S. Wu, Y.F. Tong, Total synthesis of 6'-hydroxy justicidin A, J. Asian Nat. Prod. Res. 14 (2012) 322-326.

    10. [10]

      [10] (a) S.P. Wang, Y.F. Tong, L. Li, S. Wu, Y. Qi, The synthesis of justicidinoside B and its atropisomer, J. Asian Nat. Prod. Res. 15 (2013) 644-649; (b) J.L. Charlton, C.J. Oleschuk, G.L. Chee, Hindered rotation in arylnaphthalene lignans, J. Org. Chem. 61 (1996) 3452-3457.

    11. [11]

      [11] M.C. Carreno, J.L. Garcia Ruano, G. Sanz, M.A. Toledo, A. Urbano, N-bromosuccinimide in acetonitrile: a mild and regiospecific nuclear brominating reagent for methoxybenzenes and naphthalenes, J. Org. Chem. 60 (1995) 5328-5331.

    12. [12]

      [12] W.G. Zhang, J.G. Lin, X.S. Yao, et al., Total synthesis of two new dihydrostilbenes from Bulbophyllum odoratissimum, J. Asian Nat. Prod. Res. 9 (2007) 23-28.

    13. [13]

      [13] Data of compounds 3 and 8. Compound 3: White solid, mp 95-96℃. 1H NMR (300 MHz, DMSO-d6): δ 3.74 (s, 3H, -OCH3), 3.77 (s, 3H, -OCH3), 3.98-3.89 (m, 2H, C-CH2-C), 4.14-4.03 (m, 2H, C-CH2-C), 5.82 (s, 1H, Ar-CH-O), 7.03 (s, 1H, Ar-H), 7.12 (s, 1H, Ar-H). 13C NMR (100 MHz, DMSO-d6):δ190.8, 155.2, 149.3, 126.4, 120.0, 116.6, 111.1, 65.5, 63.5, 57.1, 56.3. HRESIMS Calcd. for C11H14BrO4 [M+H]+: 289.0070, found: 289.0064. Compound 8: White solid, mp 66-68℃. 1H NMR (400 MHz, DMSO-d6):δ5.23 (s, 2H, Ar-CH2-O), 6.14 (s, 2H, O-CH2-O), 7.09 (s, 1H, Ar-H), 7.61-7.19 (m, 6H, Ar-H×6), 9.75 (s, 1H, -CHO). 13CNMR(100 MHz, DMSOd6):δ191.5, 149.9, 143.2, 141.6, 137.0, 132.1, 129.2, 128.8, 128.6, 113.6, 103.4, 103.1, 71.3. HRESIMS Calcd. for C15H13O4 [M+H]+: 257.0808, found: 257.0799.

    14. [14]

      [14] Data of compounds 9-14. Compound 9: White solid, mp 115-116℃. 1H NMR (400 MHz, DMSO-d6):δ3.66 (s, 3H, -OCH3), 3.72 (s, 3H, -OCH3), 3.97-3.84 (m, 2H, C-CH2-C), 4.11-3.98 (m, 2H, C-CH2-C), 5.10 (s, 2H, Ar-CH2-O), 5.75 (s, 1H, Ar-CH-O), 5.90 (s, 1H, Ar-CH-Ar), 5.92 (s, 2H, O-CH2-O), 6.47 (s, 1H, Ar-H), 6.70 (s, 1H, Ar-H), 6.92 (s, 1H, Ar-H), 6.97 (s, 1H, Ar-H), 7.48-7.21 (m, 5H, Ar-H×5). 13C NMR (125 MHz, DMSO-d6):δ149.7, 148.8, 147.9, 142.1, 140.5, 137.4, 137.1, 134.2, 128.8, 128.4, 128.2, 126.7, 111.0, 109.9, 108.3, 101.5, 101.2, 100.5, 71.0, 69.3, 65.1, 56.1, 56.0. HRESIMS Calcd. for C26H26NaO8 [M+Na]+: 489.1520, found: 489.1512. Compound 10: White solid,mp 162-164℃. 1H NMR (400 MHz, DMSOd6):δ0.94 (t, 3H, J=7.1 Hz, -CH3), 1.25 (t, 3H, J=7.1 Hz, -CH3), 3.60 (s, 3H-OCH3), 3.93 (s, 3H, -OCH3), 3.95 (q, 2H, J=7.1 Hz, C-CH2-C), 4.33 (q, 3H, J=7.1 Hz, C-CH2-C), 5.14 (s, 2H, Ar-CH2-O), 6.06 (s, 1H, O-CH-O), 6.09 (s, 1H, O-CH-O), 6.45 (s, 1H, Ar-H), 6.56 (s, 1H, Ar-H), 6.71 (s, 1H, Ar-H), 7.48-7.27 (m, 5H, Ar-H×5), 7.63 (s, 1H, Ar-H), 11.92 (s, 1H, Ar-OH). 13C NMR (125 MHz, DMSO-d6):δ169.0, 168.6, 157.3, 152.2, 151.5, 149.1, 148.1, 141.6, 136.7, 134.5, 131.4, 130.7, 129.4, 128.4, 127.9, 127.6, 111.7, 105.6, 104.7, 103.2, 102.6, 101.4, 76.9, 70.4, 55.5, 55.2, 52.3, 51.6, 13.6, 13.5. HRESIMS Calcd. for C32H31O10 [M+H]+: 575.1912, found: 575.1902. Compound 11: White solid, mp 206-207℃. 1H NMR (300 MHz, DMSO-d6):δ3.58 (s, 3H, -OCH3), 3.92 (s, 3H, -OCH3), 5.13 (s, 2H, Ar-CH2-O), 5.36 (s, 2H, Ar-CH2-O), 6.09 (s, 2H, O-CH2-O), 6.53 (s, 1H, Ar-H), 6.62 (s, 1H, Ar-H), 6.90 (s, 1H, Ar-H), 7.46-7.24 (m, 5H, Ar-H×5), 7.62 (s, 1H, Ar-H), 10.50 (s, 1H, Ar-OH). 13C NMR (150 MHz, DMSO-d6):δ169.5, 150.5, 149.7, 148.1, 144.9, 141.7, 136.8, 134.7, 129.4, 129.4, 129.3, 128.4, 127.9, 127.7, 123.2, 121.7, 118.7, 111.4, 105.5, 105.0, 101.3, 100.7, 70.4, 66.6, 55.5, 55.1. HRESIMS Calcd. for C28H23O8

    15. [15]

      [M+H]+: 487.1387, found: 487.1391. Compound 12: White solid, mp 223-224℃. 1H NMR (300 MHz, DMSO-d6):δ3.58 (s, 3H, -OCH3), 3.93 (s, 3H, -OCH3), 4.12 (s, 3H, -OCH3), 5.13 (s, 2H, Ar-CH2-O), 5.70 (s, 2H, Ar-CH2-O), 6.10 (s, 2H, O-CH2-O), 6.54 (s, 1H, Ar-H), 6.62 (s, 1H, Ar-H), 6.89 (s, 1H, Ar-H), 7.45-7.25 (m, 5H, Ar-H×5), 7.50 (s, 1H, Ar-H). 13C NMR (125 MHz, acetone-d6):δ168.9, 151.3, 150.1, 148.3, 147.3, 141.8, 136.9, 134.9, 132.6, 129.5, 129.1, 128.4, 128.0, 127.7, 124.9, 123.9, 119.1, 111.4, 105.7, 104.8, 101.4, 100.6, 70.6, 66.8, 59.2, 55.8, 55.3. HRESIMS Calcd. for C29H25O8 [M+H]+: 501.1544, found: 501.1535. Compound 13: White solid, mp 142-143℃. 1H NMR (300 MHz, DMSO-d6):δ3.66 (s, 3H, -OCH3), 3.93 (s, 3H, -OCH3), 4.12 (s, 3H, -OCH3), 5.69 (s, 2H, Ar-CH2-O), 6.03 (s, 2H, O-CH2-O), 6.32 (s, 1H, Ar-H), 6.35 (s, 1H, Ar-H), 6.97 (s, 1H, Ar-H), 7.50 (s, 1H, Ar-H), 9.73 (s, 1H, Ar-OH). 13C NMR (100 MHz, DMSO-d6):δ169.6, 151.9, 150.6, 148.9, 147.8, 141.2, 134.2, 133.5, 130.1, 129.4, 125.5, 124.4, 119.6, 113.9, 106.3, 103.2, 101.5, 101.2, 67.4, 59.7, 56.3, 55.9. HRESIMS Calcd. for C22H19O8 [M+H]+: 411.1074, found: 411.1072. Compound 14: Yellowish solid, mp 157-158℃. 1H NMR (400 MHz, DMSO-d6):δ3.60 (s, 3H-OCH3), 3.95 (s, 3H-OCH3), 4.14 (s, 3H-OCH3), 5.14-5.16 (m, 4H, Ar-CH2-O×2), 5.73 (s, 2H, Ar-CH2-O), 6.12 (s, 1H, O-CH-O), 6.13 (s, 1H, O-CH-O), 6.68 (s, 1H, Ar-H), 6.81 (s, 1H, Ar-H), 6.92 (s, 1H, Ar-H), 7.39-7.10 (m, 10H, Ar-H 1'), 7.52 (s, 1H, Ar-H). 13C NMR (125 MHz, DMSO-d6)δ169.4, 151.8, 150.3, 150.2, 148.1, 140.1, 139.5, 139.5, 133.3, 133.3, 130.4, 129.7, 129.7, 126.8, 126.8, 119.9, 119.9, 113.2, 110.9, 106.3, 101.7, 101.4, 98.2, 67.0, 60.2, 56.1, 55.8. 31P NMR (200 MHz, DMSO-d6):δ6.28. HRESIMS Calcd. for C36H31NaO11P [M+Na]+: 693.1496, found: 693.1492.

    16. [16]

      [15] Compound 15: White solid, mp 212-213℃. The HRESIMS of 15 established a molecular formula of C22H19O11P [m/z 513.0642 (M+Na)+, Calcd. for C22H19NaO11P: 513.0640], indicating 14 degrees of unsaturation. 1H NMR spectrum showed three methoxy groups [δH 3.70 (s, 3H, H-13), 3.94 (s, 3H, H-14), 4.13 (s, 3H, H-15)] and four aromatic protons [δH 7.51 (s, 1H, H-5), 7.05 (s, 1H, H-8), 6.70 (s, 1H, H-20), 6.83 (s, 1H, H-60)]. 13C NMR and DEPT spectra exhibited 22 carbons, including three methyls, two methylenes, sixteen quaternary carbons and one carbonyl. 31P NMR spectrum revealed the existence of one phosphate ester. The HMBC correlations of H-5/C-4, C-7, C-9 and H-8/C-1, C-6, C-10 revealed the present of naphthyl (ring A and ring B). The correlations from H-12 to C-2, C-3, C-4 and C-11 suggested the present of ring C. The correlations of H-13/C-7, H-14/ C-6 and H-15/C-4 gave the substituted positions of three methoxy groups. The linkage of ring B and D was elucidated by the HMBC correlations from H-20 and H-60 to C-1 and C-10. The correlations from H-70 to C-40 and C-50 revealed the presence of ring E. The planar structure of 15 was thus established. 1H NMR (400 MHz, DMSO-d6):δ7.51 (s, 1H, H-5), 7.05 (s, 1H, H-8), 5.71 (s, 2H, H-12), 3.70 (s, 3H, H-13), 3.94 (s, 3H, H-14), 4.13 (s, 3H, H-15), 6.70 (s, 1H, H-20), 6.83 (s, 1H, H-60), 6.13 (d, 2H, J=4.1 Hz, H-70). 13C NMR (125 MHz, DMSO-d6):δ132.3 (C-1), 116.9 (C-2), 119.4 (C-3), 147.8 (C-4), 101.3 (C-5), 151.7 (C-6), 150.5 (C-7), 106.0 (C-8), 128.6 (C-9), 129.7 (C-1'), 169.4 (C-11), 67.3 (C-12), 55.7 (C-13), 56.1 (C-14), 59.6 (C-15), 125.3 (C-1'), 107.6 (C-2'), 148.9 (C-3'), 137.2 (C-4'), 148.9 (C-5'), 116.9 (C-6'), 102.1 (C-7'). 31P NMR (200 MHz, DMSO-d6):δ5.83.

    17. [17]

      [16] National Pharmacopoeia Committee, Pharmacopoeia of People’s Republic of China. Part 2, vol. XIV, Chemical Industry Press, Beijing, 2010.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    5. [5]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    6. [6]

      Qunlong ZhangJingyi KangJingwen WangTiancheng TanZhaoyong Lu . Divergent total synthesis of sesquiterpene (hydro)quinone meroterpenoids dysideanones A and E–G. Chinese Chemical Letters, 2025, 36(3): 109915-. doi: 10.1016/j.cclet.2024.109915

    7. [7]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    8. [8]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    9. [9]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    10. [10]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    11. [11]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    12. [12]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    13. [13]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    14. [14]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    15. [15]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    16. [16]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    17. [17]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    18. [18]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    19. [19]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    20. [20]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

Metrics
  • PDF Downloads(0)
  • Abstract views(639)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return