Citation:
Jin Huang, Yong He, Xiao-Hai Yang, Ke Quan, Ke-Min Wang. Inhibited aptazyme-based catalytic molecular beacon for amplifi ed detection of adenosine[J]. Chinese Chemical Letters,
;2014, 25(9): 1211-1214.
doi:
10.1016/j.cclet.2014.05.039
-
Combining the inhibited aptazyme and molecular beacon (MB), we developed a versatile sensing strategy for amplified detection of adenosine. In this strategy, the adenosine aptamer links to the 8-17 DNAzyme to form an aptazyme. A short sequence, denoted as inhibitor, is designed to form a duplex spanning the aptamer-DNAzyme junction, which blocks the catalytic function of the DNAzyme. Only in the presence of target adenosine, the aptamer binds to adenosine, thus the inhibitor dissociates from the aptamer portion of the aptazyme and can no longer form the stable duplex required to inhibit the catalytic activity of the aptazyme. The released DNAzyme domain will hybridize to the MB and catalyze the cleavage in the presence of Zn2+, making the fluorophore separate from the quencher and resulting in fluorescence signal. The results showed that the detection method has a dynamic range from 10 nmol/L to 1 nmol/L, with a detection limit of 10 nmol/L.
-
Keywords:
- Aptazyme,
- DNAzyme,
- Catalytic molecular beacon,
- Adenosine
-
-
-
[1]
[1] J.M. Morgan, D.G. McCormack, M.J. Griffiths, et al., Adenosine as a vasodilator in primary pulmonary hypertension, Circulation 84 (1991) 1145-1149.
-
[2]
[2] F. Costa, I. Biaggioni, Role of nitric oxide in adenosine-induced vasodilation in humans, Hypertension 31 (1998) 1061-1064.
-
[3]
[3] G. Hasko, J. Linden, B. Cronstein, et al., Adenosine receptors: therapeutic aspects for inflammatory and immune diseases, Nat. Rev. Drug Discov. 7 (2008) 759-770.
-
[4]
[4] D.E. Huizenga, J.W. Szostak, A DNA aptamer that binds adenosine and ATP, Biochemistry 34 (1995) 656-665.
-
[5]
[5] W. Xu, Y. Lu, Label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence, Anal. Chem. 82 (2010) 574-578.
-
[6]
[6] L.L. Li, P.H. Ge, P.R. Selvin, Y. Lu, Direct detection of adenosine in undiluted serum using a luminescent aptamer sensor attached to a terbium complex, Anal. Chem. 84 (2012) 7852-7856.
-
[7]
[7] J.B. Liu, Y. Liu, X.H. Yang, et al., Exciton energy transfer-based fluorescent sensing through aptamer-programmed self-assembly of quantum dots, Anal. Chem. 85 (2013) 11121-11128.
-
[8]
[8] A. Ferguson, R.M. Boomer, M. Kurz, et al., A novel strategy for selection of allosteric ribozymes yields riboreporterTM sensors for caffeine and aspartame, Nucleic Acids Res. 32 (2004) 1756-1766.
-
[9]
[9] J. Srinivasan, S.T. Cload, N. Hamaguchi, et al., ADP-specific sensors enable universal assay of protein kinase activity, Chem. Biol. 11 (2004) 499-508.
-
[10]
[10] S. Tyagi, F.R. Kramer, Molecular beacons: probes that fluoresce upon hybridization, Nat. Biotchnol. 14 (1996) 303-308.
-
[11]
[11] K. Wang, Z. Tang, C. Yang, et al., Molecular engineering of DNA: molecular beacons, Angew. Chem. Int. Ed. 48 (2009) 856-870.
-
[12]
[12] J. Huang, X.H. Yang, X.X. He, et al., Design and bioanalytical applications of DNA hairpin-based fluorescent probes, Trends Anal. Chem. 53 (2014) 11-20.
-
[13]
[13] X. Zhang, Z. Wang, H. Xing, Y. Xiang, Y. Lu, Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity, Anal. Chem. 82 (2010) 5005-5011.
-
[14]
[14] L. Lu, X. Zhang, R. Kong, et al., A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal, J. Am. Chem. Soc. 133 (2011) 11686-11691.
-
[15]
[15] X. Zhao, L. Gong, X. Zhang, et al., Versatile DNAzyme-based amplified biosensing platforms for nucleic acid, protein, and enzyme activity detection, Anal. Chem. 85 (2013) 3614-3620.
-
[16]
[16] D. Faulhammer, M. Famulok, The Ca2+ ion as a cofactor for a novel RNA-cleaving deoxyribozyme, Angew. Chem. Int. Ed. 35 (1996) 2837-2841.
-
[17]
[17] R.P. Cruz, J.B. Withers, Y. Li, Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme, Chem. Biol. 11 (2004) 57-67.
-
[18]
[18] J. Achenbach, R. Nutiu, Y.F. Li, Structure-switching allosteric deoxyribozymes, Anal. Chem. Acta 534 (2005) 41-51.
-
[19]
[19] J. Liu, Y. Lu, Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor, Anal. Chem. 76 (2004) 1627-1632.
-
[20]
[20] H. Liu, Y. Xiang, Y. Lu, et al., Aptamer-based origami paper analytical device for electrochemical detection of adenosine, Angew. Chem. Int. Ed. 51 (2012) 6925-6928.
-
[21]
[21] S. Wang, S. Si, Direct fluorescence polarization aptamer-based assay for the determination of adenosine, Anal. Methods 5 (2013) 840-843.
-
[22]
[22] Y. Xiang, A.J. Tong, Y. Lu, Abasic site-containing DNAzyme and aptamer for labelfree fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range, J. Am. Chem. Soc. 131 (2009) 15352-15357.
-
[23]
[23] Z.Z. Lü, J.C. Liu, Y. Zhou, et al., Highly sensitive fluorescent detection of small molecules, ions, and proteins using a universal label-free aptasensor, Chem. Commun. 54 (2013) 5465-5467.
-
[1]
-
-
-
[1]
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
-
[2]
Yiyang Shen , Zhen Zhang , Ruyi Liang , Tongbo Wu . Unraveling the interplay of DNAzyme and interfacial factors for enhanced biosensing. Chinese Chemical Letters, 2024, 35(12): 109638-. doi: 10.1016/j.cclet.2024.109638
-
[3]
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
-
[4]
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
-
[5]
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
-
[6]
Yanwei Duan , Qing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905
-
[7]
Jun Zhang , Zhiyao Zheng , Can Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160
-
[8]
Xingfen Huang , Jiefeng Zhu , Chuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783
-
[9]
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
-
[10]
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
-
[11]
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
-
[12]
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
-
[13]
Dongpu Wu , Zheng Yang , Yuchen Xia , Lulu Wu , Yingxia Zhou , Caoyuan Niu , Puhui Xie , Xin Zheng , Zhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353
-
[14]
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
-
[15]
Kai Ye , Zhicheng Ye , Chuantao Wang , Zhilai Luo , Cheng Lian , Chunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033
-
[16]
Man Wu , Chuandong Jia . A light-powered molecular pump achieving transmembrane concentration gradient. Chinese Journal of Structural Chemistry, 2025, 44(4): 100452-100452. doi: 10.1016/j.cjsc.2024.100452
-
[17]
Jian Ji , Jie Yan , Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360
-
[18]
Zhenzhong MEI , Hongyu WANG , Xiuqi KANG , Yongliang SHAO , Jinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081
-
[19]
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411
-
[20]
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(669)
- HTML views(10)