Citation: Jin Huang, Yong He, Xiao-Hai Yang, Ke Quan, Ke-Min Wang. Inhibited aptazyme-based catalytic molecular beacon for amplifi ed detection of adenosine[J]. Chinese Chemical Letters, ;2014, 25(9): 1211-1214. doi: 10.1016/j.cclet.2014.05.039 shu

Inhibited aptazyme-based catalytic molecular beacon for amplifi ed detection of adenosine

  • Corresponding author: Ke-Min Wang, 
  • Received Date: 12 March 2014
    Available Online: 29 April 2014

    Fund Project: Hunan Provincial Natural Science Foundation of China (No. 13JJ4032) (No. 2013M531779)the Fundamental Research Funds for the Central Universities of China. (No. 13JJ4032)

  • Combining the inhibited aptazyme and molecular beacon (MB), we developed a versatile sensing strategy for amplified detection of adenosine. In this strategy, the adenosine aptamer links to the 8-17 DNAzyme to form an aptazyme. A short sequence, denoted as inhibitor, is designed to form a duplex spanning the aptamer-DNAzyme junction, which blocks the catalytic function of the DNAzyme. Only in the presence of target adenosine, the aptamer binds to adenosine, thus the inhibitor dissociates from the aptamer portion of the aptazyme and can no longer form the stable duplex required to inhibit the catalytic activity of the aptazyme. The released DNAzyme domain will hybridize to the MB and catalyze the cleavage in the presence of Zn2+, making the fluorophore separate from the quencher and resulting in fluorescence signal. The results showed that the detection method has a dynamic range from 10 nmol/L to 1 nmol/L, with a detection limit of 10 nmol/L.
  • 加载中
    1. [1]

      [1] J.M. Morgan, D.G. McCormack, M.J. Griffiths, et al., Adenosine as a vasodilator in primary pulmonary hypertension, Circulation 84 (1991) 1145-1149.

    2. [2]

      [2] F. Costa, I. Biaggioni, Role of nitric oxide in adenosine-induced vasodilation in humans, Hypertension 31 (1998) 1061-1064.

    3. [3]

      [3] G. Hasko, J. Linden, B. Cronstein, et al., Adenosine receptors: therapeutic aspects for inflammatory and immune diseases, Nat. Rev. Drug Discov. 7 (2008) 759-770.

    4. [4]

      [4] D.E. Huizenga, J.W. Szostak, A DNA aptamer that binds adenosine and ATP, Biochemistry 34 (1995) 656-665.

    5. [5]

      [5] W. Xu, Y. Lu, Label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence, Anal. Chem. 82 (2010) 574-578.

    6. [6]

      [6] L.L. Li, P.H. Ge, P.R. Selvin, Y. Lu, Direct detection of adenosine in undiluted serum using a luminescent aptamer sensor attached to a terbium complex, Anal. Chem. 84 (2012) 7852-7856.

    7. [7]

      [7] J.B. Liu, Y. Liu, X.H. Yang, et al., Exciton energy transfer-based fluorescent sensing through aptamer-programmed self-assembly of quantum dots, Anal. Chem. 85 (2013) 11121-11128.

    8. [8]

      [8] A. Ferguson, R.M. Boomer, M. Kurz, et al., A novel strategy for selection of allosteric ribozymes yields riboreporterTM sensors for caffeine and aspartame, Nucleic Acids Res. 32 (2004) 1756-1766.

    9. [9]

      [9] J. Srinivasan, S.T. Cload, N. Hamaguchi, et al., ADP-specific sensors enable universal assay of protein kinase activity, Chem. Biol. 11 (2004) 499-508.

    10. [10]

      [10] S. Tyagi, F.R. Kramer, Molecular beacons: probes that fluoresce upon hybridization, Nat. Biotchnol. 14 (1996) 303-308.

    11. [11]

      [11] K. Wang, Z. Tang, C. Yang, et al., Molecular engineering of DNA: molecular beacons, Angew. Chem. Int. Ed. 48 (2009) 856-870.

    12. [12]

      [12] J. Huang, X.H. Yang, X.X. He, et al., Design and bioanalytical applications of DNA hairpin-based fluorescent probes, Trends Anal. Chem. 53 (2014) 11-20.

    13. [13]

      [13] X. Zhang, Z. Wang, H. Xing, Y. Xiang, Y. Lu, Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity, Anal. Chem. 82 (2010) 5005-5011.

    14. [14]

      [14] L. Lu, X. Zhang, R. Kong, et al., A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal, J. Am. Chem. Soc. 133 (2011) 11686-11691.

    15. [15]

      [15] X. Zhao, L. Gong, X. Zhang, et al., Versatile DNAzyme-based amplified biosensing platforms for nucleic acid, protein, and enzyme activity detection, Anal. Chem. 85 (2013) 3614-3620.

    16. [16]

      [16] D. Faulhammer, M. Famulok, The Ca2+ ion as a cofactor for a novel RNA-cleaving deoxyribozyme, Angew. Chem. Int. Ed. 35 (1996) 2837-2841.

    17. [17]

      [17] R.P. Cruz, J.B. Withers, Y. Li, Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme, Chem. Biol. 11 (2004) 57-67.

    18. [18]

      [18] J. Achenbach, R. Nutiu, Y.F. Li, Structure-switching allosteric deoxyribozymes, Anal. Chem. Acta 534 (2005) 41-51.

    19. [19]

      [19] J. Liu, Y. Lu, Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor, Anal. Chem. 76 (2004) 1627-1632.

    20. [20]

      [20] H. Liu, Y. Xiang, Y. Lu, et al., Aptamer-based origami paper analytical device for electrochemical detection of adenosine, Angew. Chem. Int. Ed. 51 (2012) 6925-6928.

    21. [21]

      [21] S. Wang, S. Si, Direct fluorescence polarization aptamer-based assay for the determination of adenosine, Anal. Methods 5 (2013) 840-843.

    22. [22]

      [22] Y. Xiang, A.J. Tong, Y. Lu, Abasic site-containing DNAzyme and aptamer for labelfree fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range, J. Am. Chem. Soc. 131 (2009) 15352-15357.

    23. [23]

      [23] Z.Z. Lü, J.C. Liu, Y. Zhou, et al., Highly sensitive fluorescent detection of small molecules, ions, and proteins using a universal label-free aptasensor, Chem. Commun. 54 (2013) 5465-5467.

  • 加载中
    1. [1]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    2. [2]

      Yiyang ShenZhen ZhangRuyi LiangTongbo Wu . Unraveling the interplay of DNAzyme and interfacial factors for enhanced biosensing. Chinese Chemical Letters, 2024, 35(12): 109638-. doi: 10.1016/j.cclet.2024.109638

    3. [3]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    4. [4]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    5. [5]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    6. [6]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    7. [7]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    8. [8]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    9. [9]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    10. [10]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    11. [11]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    12. [12]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    13. [13]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    14. [14]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    15. [15]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    16. [16]

      Man Wu Chuandong Jia . A light-powered molecular pump achieving transmembrane concentration gradient. Chinese Journal of Structural Chemistry, 2025, 44(4): 100452-100452. doi: 10.1016/j.cjsc.2024.100452

    17. [17]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    18. [18]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    19. [19]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    20. [20]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

Metrics
  • PDF Downloads(0)
  • Abstract views(669)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return