Citation: Li-Hui Kong, Da-Wei Fu, Qiong Ye, Heng-Yun Ye, Yi Zhang, Ren-Gen Xiong. Iso-structural phase transition in tetramethylammonium nickel(II) nitrite [(CH3)4N][Ni(NO2)3][J]. Chinese Chemical Letters, ;2014, 25(6): 844-848. doi: 10.1016/j.cclet.2014.05.028 shu

Iso-structural phase transition in tetramethylammonium nickel(II) nitrite [(CH3)4N][Ni(NO2)3]

  • Corresponding author: Qiong Ye,  Ren-Gen Xiong, 
  • Received Date: 8 April 2014
    Available Online: 14 May 2014

    Fund Project: This work was financially supported by the Project 973 (No. 2014CB848800) (No. 2014CB848800) Program for NCET and Ph.D. Programs Foundation of Ministry of Education of China (No. 20130092120013). (No. BK20130600)

  • The title compound, tetramethylammonium nickel nitrite [(CH3)4N][Ni(NO2)3], has a hexagonal perovskite-type structure with formula ABX3. It undergoes two reversible phase transitions occurring at about 409.1 and 428.4 K, associated with dielectric transitions. DSC measurement and dielectric measurement confirm the transition. The variable-temperature X-ray structural determinations and the powder X-ray diffraction (PXRD) experiments reveal that this compound has the same space group P3m1 (No. 164) at 293 K, 413 K and 438 K. The phase transitions are caused by the rotation of the [(CH3)4N]+ cation.
  • 加载中
    1. [1]

      [1] V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht, R. Kunze, Perovskite CaTiO3 as an incipient ferroelectric, Solid State Commun. 110 (1999) 611-614.

    2. [2]

      [2] L.G. Tejuca, J.L.G. Fierro, M. Dekker, Properties and Applications of Perovskite-Type Oxides, Marcel Dekker Inc., New York, 1993.

    3. [3]

      [3] M.A. Peña, J.L.G. Fierro, Chemical structures and performance of perovskite oxides, Chem. Rev. 101 (2001) 1981-2018.

    4. [4]

      [4] R.G. Xiong, The temperature-dependent domains SHG effect and piezoelectric coefficient of TGS, Chin. Chem. Lett. 24 (2013) 681-684.

    5. [5]

      [5] P. Jain, N.S. Dalal, B.H. Toby, H.W. Kroto, A.K. Cheetham, Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture, J. Am. Chem. Soc. 130 (2008) 10450-10451.

    6. [6]

      [6] D.G. Billing, A. Lemmerer, Synthesis, characterization and phase transitions of the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n=12, 14, 16 and 18), New J. Chem. 32 (2008) 1736-1746.

    7. [7]

      [7] A. Lemmerer, D.G. Billing, Synthesis, characterization and phase transitions of the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n=7, 8, 9 and 10), Dalton. Trans. 41 (2012) 1146-1157.

    8. [8]

      [8] R. Kind, S. Plesko, H. Arend, et al., Dynamics of the n-decylammonium chains in the perovskite type layer structure compound (C10H21NH3)2CdCl4, J. Chem. Phys. 71 (1979) 2118-2130.

    9. [9]

      [9] H.L. Cai, Y. Zhang, D.W. Fu, et al., Above-rooμ-temperature magnetodielectric coupling in a possible molecule-based multiferroic: triethylmethylammonium tetrabromoferrate(III), J. Am. Chem. Soc. 134 (2012) 18487-18490.

    10. [10]

      [10] R. Kind, S. Plesko, P. Gunter, Structural phase transitions in the perovskite-type layer compounds NH3(CH2)3NH3CdCl4, NH3(CH3)4NH3MnC14, and NH3(CH2)5NH3CdCl4, Phys. Rev. B 23 (1981) 5301-5315.

    11. [11]

      [11] Y. Zhang, H.Y. Ye, W. Zhang, R.G. Xiong, Rooμ-temperature ABX3-typed molecular ferroelectric: [C5H9-NH3][CdCl3], Inorg. Chem. Front. 1 (2014) 118-123.

    12. [12]

      [12] W. Zhang, Y. Cai, R.G. Xiong, H. Yoshikawa, K. Awaga, Exceptional dielectric phase transitions in a perovskite-type cage compound, Angew. Chem. Int. Ed. 49 (2010) 6608-6610.

    13. [13]

      [13] G.C. Xu, X.M. Ma, L. Zhang, Z.M. Wang, S. Gao, Disorder-order ferroelectric transition in the metal formate framework of [NH4][Zn(HCOO)3], J. Am. Chem. Soc. 132 (2010) 9588-9590.

    14. [14]

      [14] G.C. Xu, W. Zhang, X.M. Ma, et al., Coexistence of magnetic and electric orderings in the metal-formate frameworks of [NH4][M(HCOO)3], J. Am. Chem. Soc. 133 (2011) 14948-14951.

    15. [15]

      [15] S. Chen, R. Shang, K.L. Hu, Z.M. Wang, S. Gao, [NH2NH3][M(HCOO)3](M=Mn2+, Zn2+, Co2+ and Mg2+): structural phase transitions, prominent dielectric anomalies and negative thermal expansion, and magnetic ordering, Inorg. Chem. Front. 1 (2014) 83-98.

    16. [16]

      [16] T. Hang, W. Zhang, H.Y. Ye, R.G. Xiong, Metal-organic complex ferroelectrics, Chem. Soc. Rev. 40 (2011) 3577-3598.

    17. [17]

      [17] W. Zhang, H.Y. Ye, R.G. Xiong, Metal-organic coordination compounds for potential ferroelectrics, Coord. Chem. Rev. 253 (2009) 2980-2997.

    18. [18]

      [18] W.X. Wang, H.L. Cai, R.G. Xiong, Hydrothermal synthesis method of 5-(40-methylbiphenyl-2-yl)-1H-tetrazole, Chin. Chem. Lett. 24 (2013) 783-785.

    19. [19]

      [19] L. Katz, R. Ward, Structure relations in mixed metal oxides, Inorg. Chem. 3 (1964) 205-211.

    20. [20]

      [20] J. Darriet, M.A. Subramanian, Structural relationships between compounds based on the stacking of mixed layers related to hexagonal perovskite-type structures, J. Mater. Chem. 5 (1995) 543-552.

    21. [21]

      [21] J.J. Lander, The crystal structures of NiO3BaO, NiO BaO, BaNiO3 and intermediate phases with composition near Ba2Ni2O5;with a note on NiO, Acta Crystallogr. 4 (1951) 148-156.

    22. [22]

      [22] A.B. Corradi, M.R. Cramarossa, M. Saladini, Design, synthesis, structural and thermal characterisation of polymeric chlorocadmate(II) compounds with onedimensional inorganic chain structures, Inorg. Chim. Acta 257 (1997) 19-26.

    23. [23]

      [23] F.S. James, Iso-structural phase transitions in BiFeO3, Adv. Mater. 22 (2010) 2106-2107.

    24. [24]

      [24] P. Zhou, Z.H. Sun, S.Q. Zhang, et al., A sequentially switchable molecular dielectric material tuned by the stepwise ordering in diisopropylammonium trifluoromethanesulfonate, J. Mater. Chem. C 2 (2014) 2341-2345.

    25. [25]

      [25] X.X. Jiang, S.G. Zhao, Z.S. Lin, et al., The role of dipole moment in determining the nonlinear optical behavior of crystals: ab initio studies on ternary molybdenum tellurite crystals, J. Mater. Chem. C 2 (2014) 530-537.

    26. [26]

      [26] Z.H. Sun, J.H. Luo, C.M. Ji, et al., Solid-state reversible quadratic nonlinear optical molecular switch with an exceptional large-contrast, Adv. Mater. 25 (2013) 4159-4163.

    27. [27]

      [27] S.G. Li, J.H. Luo, Z.H. Sun, et al., Phase transition triggered by ordering of a unique penduluμ-like motions in a supramolecular complex: potassium hydrogen bis(dichloroacetate)-18-crown-6, Cryst. Growth Des. 13 (2013) 2675-2679.

    28. [28]

      [28] X.J. Shi, J.H. Luo, Z.H. Sun, et al., Switchable dielectric phase transition induced by ordering of twisting motion in 1,4-diazabicyclo[2.2.2]octane chlorodifluoroacetate, Cryst. Growth Des. 13 (2013) 2081-2086.

    29. [29]

      [29] Z.H. Sun, X.Q. Wang, J.H. Luo, et al., Ferroelastic phase transition and switchable dielectric behavior associated with ordering of molecular motion in a perovskitelike architectured supramolecular cocrystal, J. Mater. Chem. C. 1 (2013) 2561-2567.

    30. [30]

      [30] Z.H. Sun, J.H. Luo, T.L. Chen, et al., Distinct molecular motions in a switchable chromophore dielectric 4-N,N-dimethylamino-40-N'-methylstilbazolium trifluoromethanesulfonate, Adv. Funct. Mater. 22 (2012) 4855-4861.

    31. [31]

      [31] S. Tripathi, V. Petkov, Iso-structural phase transition in YMnO3 nanosized particles, Appl. Phys. Lett. 102 (2013) 061909-1-061909-4.

    32. [32]

      [32] E.R. Magnaschi, A. Rigamonti, L. Menafra, Dielectric dispersion and absorption and proton spin-lattice relaxation at the phase transition in the layered crystal SnCl22H2O, Phys. Rev. B 14 (1976) 2005-2013.

    33. [33]

      [33] V.E. Schneider, E.E. Tornau, On the theory of isostructural phase transitions in crystals, Phys. Status Solidi (b) 111 (1982) 565-574.

    34. [34]

      [34] G.A. Zamalloa, G. Madariaga, M. Couzi, T. Breczewski, X-ray diffraction study of the ferroelectric phase transition of (CH3)4NCdBr3, Acta Crystallogr., Sect. B: Struct. Sci. 49 (1993) 691-698.

    35. [35]

      [35] L.K. Chou, K.A. Abboud, D.R. Talham, Structure and orientation-dependent magnetic susceptibility of tetramethylammonium nickel nitrite [(CH3)4N][Ni(NO2)3]: An S=1 one-dimensional Heisenberg antiferromagnet, Chem. Mater. 6 (1994) 2051-2055.

    36. [36]

      [36] G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of Gǒingen, Germany, 1997.

    37. [37]

      [37] A. Altomare, M.C. Burla, M. Camalli, et al., SIR92-a program for automatic solution of crystal structures by direct methods, J. Appl. Crystallogr. 27 (1994) 435-436.

    38. [38]

      [38] Crystallographic data were collected using a Rigaku Saturn 924 diffractometer equipped with Rigaku high temperature heater, by using Mo Kα(λ=0.71073Å) radiation from a graphite monochromator. The crystal temperature was stable to within 2-5 K. Data processing including empirical absorption correction was performed using the Crystalclear software package (Rigaku, 2005). The structures were solved by direct methods and successive Fourier synthesis and then refined by full-matrix least-squares refinements on F2 using the SHELXLTL software package (Sheldrick, 2008). Non-H atoms were refined anisotropically using all reflections with I > 2σ(I). All H atoms placed at ideal positions and refined using a "riding" model for H atoms with Uiso=1.2 Ueq (C or N).

  • 加载中
    1. [1]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    2. [2]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    3. [3]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    4. [4]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    5. [5]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    6. [6]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    7. [7]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    8. [8]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    9. [9]

      Hao-Fei NiJia-He LinGele TeriQiang-Qiang JiaPei-Zhi HuangHai-Feng LuChang-Feng WangZhi-Xu ZhangDa-Wei FuYi Zhang . B-site ion regulation strategy enables performance optimization and multifunctional integration of hybrid perovskite ferroelectrics. Chinese Chemical Letters, 2025, 36(3): 109690-. doi: 10.1016/j.cclet.2024.109690

    10. [10]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    11. [11]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    12. [12]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    13. [13]

      Fan WuShaoyang WuXin YeYurong RenPeng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851

    14. [14]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    15. [15]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    16. [16]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    17. [17]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    18. [18]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    19. [19]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    20. [20]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

Metrics
  • PDF Downloads(0)
  • Abstract views(729)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return