Citation: Rong-Mei Wen, Song-De Han, Hao Wang, Ying-Hui Zhang. Synthesis, structure and magnetic properties of manganese(II) coordination polymer with azido and zwitterionic dicarboxylate ligand[J]. Chinese Chemical Letters, ;2014, 25(6): 854-858. doi: 10.1016/j.cclet.2014.05.026 shu

Synthesis, structure and magnetic properties of manganese(II) coordination polymer with azido and zwitterionic dicarboxylate ligand

  • Corresponding author: Ying-Hui Zhang, 
  • Received Date: 15 April 2014
    Available Online: 15 May 2014

    Fund Project: This work was financially supported by MOE Innovation Team of China (No. IRT13022). (No. IRT13022)

  • A coordination polymer formulated as {[Mn2L(N3)4]•2H2O}n(1) [L=1,4-bis(pyridinil-3-carboxylato)-l,4-dimethylbenzene] was synthesized and structurally and magnetically characterized. The uniform Mn(II) chains withmixed (μ-EO-N3)2(μ-COO) triple bridges (EO=end-on) are linked by L ligands to generate a 2-fold interpenetrating 3D framework. Meanwhile, magnetism analysis reveals antiferromagnetic coupling for 1.
  • 加载中
    1. [1]

      [1] (a) B. Moulton, M.J. Zaworotko, From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids, Chem. Rev. 101 (2001) 1629-1658;(b) D. Tian, Q. Chen, Y. Li, et al., A mixed molecular building block strategy for the design of nested polyhedron metal-organic frameworks, Angew. Chem. Int. Ed. 53 (2014) 837-841;(c) J.R. Li, Y. Tao, Q. Yu, et al., Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels, Chem. Eur. J. 14 (2008) 2771-2776;(d) S.R. Batten, K.S. Murray, Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide, Coord. Chem. Rev. 246 (2003) 103-130;(e) K.H. He, Y.W. Li, Y.Q. Chen, Z. Chang, A new 8-connected self-penetrating metal-organic framework based on dinuclear cadmiumclusters as secondary building units, Chin. Chem. Lett. 24 (2013) 691-694.

    2. [2]

      [2] (a) K. Sumida, D.L. Rogow, J.A. Mason, et al., Carbon dioxide capture in metal-organic frameworks, Chem. Rev. 112 (2012) 724-789;(b) T.R. Cook, Y.R. Zheng, P.J. Stang, Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials, Chem. Rev. 113 (2013) 734-777;(c) G. Férey, C.Mellot-Draznieks, C. Serre, F. Millange, Crystallized frameworkswith giant pores: are there limits to the possible? Acc. Chem. Res. 38 (2005) 217-225;(d) G.Q. Kong, C.D. Wu, A self-assembled supramolecular solid for catalytic application, Inorg. Chem. Commun. 12 (2009) 731-734.

    3. [3]

      [3] (a) S.L. James, Metal-organic frameworks, Chem. Soc. Rev. 32 (2003) 276-288;(b) H.L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework, J. Am. Chem. Soc. 133 (2011) 1304-1306;(c) Y. Mizuno, M. Okubo, K. Kagesawa, et al., Precise electrochemical control of ferromagnetism in a cyanide-bridged bimetallic coordination polymer, Inorg. Chem. 51 (2012) 10311-10316;(d) F. Pointillart, K. Bernot, G. Poneti, R. Sessoli, Crystal packing effects on the magnetic slow relaxation of Tb(III)-nitronyl nitroxide radical cyclic dinuclear clusters, Inorg. Chem. 51 (2012) 12218-12229;(e) G.Q. Kong, C.D. Wu, Four novel coordination polymers based on a flexible zwitterionic ligand and their framework dependent luminescent properties, Cryst. Growth Des. 10 (2010) 4590-4595.

    4. [4]

      [4] (a) J.Y. Lee, O.M. Farha, J. Roberts, et al., Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38 (2009) 1450-1459;(b) A. Corma, H. Garcia, F.X. Llabres, I. Xamena, Engineering metal organic frameworks for heterogeneous catalysis, Chem. Rev. 110 (2010) 4606-4655;(c) F.J. Song, C. Wang, J.M. Falkowski, L.Q. Ma, W.B. Lin, Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes, J. Am. Chem. Soc. 132 (2010) 15390-15398;(d) K.K. Tanabe, S.M. Cohen, Engineering a metal-organic framework catalyst by using postsynthetic modification, Angew. Chem. Int. Ed. 48 (2009) 7424-7427;(e) C.M. Liu, D.Q. Zhang, D.B. Zhu, Field-induced single-ion magnets based on enantiopure chiral β-diketonate ligands, Inorg. Chem. 52 (2013) 8933-8940.

    5. [5]

      [5] (a) J. Ribas, A. Escuer, M. Monfort, et al., Polynuclear Ni(II) and Mn(II) azido bridging complexes. Structural trends and magnetic behavior, Coord. Chem. Rev. 193 (1999) 1027-1068;(b) X.Y. Wang, Z.M. Wang, S. Gao, Constructing magnetic molecular solids by employing three-atom ligands as bridges, Chem. Commun. (2008) 281-294;(c) Y.F. Zeng, X. Hu, F.C. Liu, X.H. Bu, Azido-mediated systems showing different magnetic behaviors, Chem. Soc. Rev. 38 (2009) 469-480;(d) F.C. Liu, Y.F. Zeng, J.R. Li, et al., Novel 3-D framework nickel(II) complex with azide, nicotinic acid, and nicotinate(1) as coligands: hydrothermal synthesis, structure, and magnetic properties, Inorg. Chem. 44 (2005) 7298-7300;(e) H.H. Ko, J.H. Lim, H.C. Kim, C.S. Hong, Coexistence of spin canting and metamagnetism in a one-dimensional Mn(III) complex bridged by a single end-to-end azide, Inorg. Chem. 45 (2006) 8847-8849.

    6. [6]

      [6] (a) E. Ruiz, J. Cano, S. Alvarez, P. Alemany, Magnetic coupling in end-on azidobridged transition metal complexes: a density functional study, J. Am. Chem. Soc. 120 (1998) 11122-11129;(b) E.C.Yang, Z.Y. Liu,Z.Y. Liu, L.N.Zhao,X.J. Zhao, Long-range ferromagneticordering in a 3D Cu(II)-tetracarboxylate framework assisted by an unprecedented bidentate μ2-O1,N4 hypoxanthine nucleobase, Dalton Trans. 39 (2010) 8868-8871;(c) C.S. Hong, J.E. Koo, S.K. Son, et al., Unusual ferromagnetic couplings in single endto-end azide-bridged cobalt (II) and nickel (II) chain systems, Chem. Eur. J. 7 (2001) 4243-4252;(d) T.C. Stamatatos, G. Christou, Azide groups in higher oxidation state manganese cluster chemistry: from structural aesthetics to single-molecule magnets, Inorg. Chem. 48 (2009) 3308-3322;(e) H.R.Wen, C.F.Wang, Y. Song, J.L. Zuo, X.Z. You, One-dimensional azido-bridged chiral metal complexes with ferromagnetic or antiferromagnetic interactions: syntheses, structures, and magnetic studies, Inorg. Chem. 44 (2005) 9039-9045.

    7. [7]

      [7] (a) X.B. Li, Y. Ma, X.M. Zhang, J.Y. Zhang, E.Q. Gao, Azide-bridged copper (II) and manganese(II) compounds with a zwitterionic tetrazolate ligand: structures and magnetic properties, Eur. J. Inorg. Chem. 30 (2011) 4738-4744;(b) F.C. Liu, Y.F. Zeng, J. Jiao, et al., First metal azide complex with isonicotinate as a bridging ligand showing new net topology: hydrothermal synthesis, structure, and magnetic properties, Inorg. Chem. 45 (2006) 2276-2778.

    8. [8]

      [8] (a) Y.F. Zeng, F.C. Liu, J.P. Zhao, et al., An azido-metal-isonicotinate complex showing long-range ordered ferromagnetic interaction: synthesis, structure and magnetic properties, Chem. Commun. (2006) 2227-2229;[(Fig._4)TD$FIG] Fig. 4. (a) The xmT vs T plot of 1. The solid red lines represent the best fits to the uniform-chain model. (b) TheMvsHplot of 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) R.-M. Wen et al. /Chinese Chemical Letters 25 (2014) 854-858 857 (b) Y.F. Zeng, J.P. Zhao, B.W. Hu, et al., Structures with tunable strong ferromagnetic coupling: from unordered (1D) to ordered (discrete), Chem. Eur. J. 13 (2007) 9924-9930;(c) F.C. Liu, Y.F. Zeng, J.P. Zhao, et al., An unusual 1D manganese azido complex with novel EO/EO/EO/EE coordination mode: synthesis, structure, and magnetic properties, Inorg. Chem. 46 (2007) 1520-1522.

    9. [9]

      [9] (a) X.J. Li, X.F. Guo, X.L. Weng, S. Lin, Two novel 2D cadmium(II) MOFs based on flexible bis(imidazolyl) and zwitterionic dicarboxylate ligands, CrystEngComm 14 (2012) 1412-1418;(b) Y.Q. Wang, Q. Yue, Y. Qi, et al., Manganese(II), iron(II), and mixed-metal metal-organic frameworks based on chains with mixed carboxylate and azide bridges:magnetic couplingand slowrelaxation, Inorg. Chem. 52(2013) 4259-4268.

    10. [10]

      [10] (a) S.D. Han, W.C. Song, J.P. Zhao, et al., Synthesis and ferrimagnetic properties of an unprecedented polynuclear cobalt complex composed of [Co24] macrocycles, Chem. Commun. 49 (2013) 871-873;(b) D. Foguet-Albiol, K.A. Abboud, G. Christou, High-nuclearity homometallic iron and nickel clusters: Fe22 and Ni24 complexes from the use of N-methyldiethanolamine, Chem. Commun. (2005) 4282-4284;(c) L. Han, H. Valle, X.H. Bu, Homochiral coordination polymer with infinite double-stranded helices, Inorg. Chem. 46 (2007) 1511-1513;(d) X.L. Hong, J. Bai, Y. Song, Y.Z. Li, Y. Pan, Luminescent open-framework antiferromagnet-hydrothermal syntheses, structures, and luminescent and magnetic properties of two novel coordination polymers: [Zn(pdoa)(bipy)]n and {[Mn(pdoa)(bipy)](bipy)}n [pdoa=2,20-(1,3-phenylenedioxy)bis(acetate);bipy=4,40-bipyridine], Eur. J. Inorg. Chem. 45 (2006) 3659-3666.

    11. [11]

      [11] F.K. Zheng, A.Q. Wu, Y. Li, G.C. Guo, J.S. Huang, Synthesis and structural characterization of a new cadmium (II) complex with a double betaine, Chin. J. Struct. Chem. 8 (2005) 940-944.

    12. [12]

      [12] A.X.S. Bruker, SAINT Software Reference Manual, Bruker Analytical X-ray Instruments Inc., Madison, WI, 1998.

    13. [13]

      [13] G.M. Sheldrick, SADABS, Siemens Area Detector Absorption Corrected Software, University of Göttingen, Germany, 1996.

    14. [14]

      [14] G.M. Sheldrick, A short history of SHELX, Acta Crystallogr. A 64 (2008) 112-122.

    15. [15]

      [15] Y.Q. Wang, Q.X. Jia, K. Wang, A.L. Cheng, E.Q. Gao, Diverse manganese(II) coordination polymers with mixed azide and zwitterionic dicarboxylate ligands: structure and magnetic properties, Inorg. Chem. 49 (2010) 1551-1560.

  • 加载中
    1. [1]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    2. [2]

      Jun-Jie Fang Yun-Peng Xie Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515

    3. [3]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    4. [4]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    5. [5]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    6. [6]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    7. [7]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    8. [8]

      Yu ZhouLin-Tao JiangXiao-Ming JiangBin-Wen LiuGuo-Cong Guo . Mixed-anion square-pyramid [SbS3I2] units causing strong second-harmonic generation intensity and large birefringence. Chinese Chemical Letters, 2025, 36(4): 109740-. doi: 10.1016/j.cclet.2024.109740

    9. [9]

      Yunjia Jiang Lingyao Wang Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374

    10. [10]

      Yunlong SunWei DingYanhao WangZhening ZhangRuyun WangYinghui GuoZhiyuan GaoHaiyan DuDong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941

    11. [11]

      Yijia JiaoYuzhu LiYuting ZhouPeipei CenYi DingYan GuoXiangyu Liu . Structural evolution and zero-field SMM behaviour in ferromagnetically-coupled disk-type Co7 clusters bearing exclusively end-on azido bridges. Chinese Chemical Letters, 2024, 35(8): 109082-. doi: 10.1016/j.cclet.2023.109082

    12. [12]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    13. [13]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    14. [14]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    15. [15]

      Jiahao LiuPeng LiuJunhong DuanQiongxuan XieJie FengHongpei TanZe MiYing LiYunjie LiaoPengfei RongWenhu ZhouXiang Gao . Macrophages-mediated tumor accumulation and deep penetration of bismuth/manganese biomineralized nanoparticles for enhanced radiotherapy. Chinese Chemical Letters, 2024, 35(12): 109632-. doi: 10.1016/j.cclet.2024.109632

    16. [16]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    17. [17]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

    18. [18]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    19. [19]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    20. [20]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

Metrics
  • PDF Downloads(0)
  • Abstract views(690)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return