Citation:
Abdol R. Hajipour, Morteza Karimzadeh, Ghobad Azizi. Highly efficient and magnetically separable nano-CuFe2O4 catalyzed S-arylation of thiourea by aryl/heteroaryl halides[J]. Chinese Chemical Letters,
;2014, 25(10): 1382-1386.
doi:
10.1016/j.cclet.2014.05.015
-
The non-toxic and magnetically separable nano-CuFe2O4 catalyzed synthesis of symmetrical aryl sulfides by the reaction of thiourea with a wide variety of aryl halides, including aryl chlorides has been reported. Excellent yields of products have been obtained under ligand-free conditions and without the use of any expensive catalyst, such as palladium.
-
-
-
[1]
[1] G. de Martino, M.C. Edler, G. La Regina, et al., New arylthioindoles: potent inhibitors of tubulin polymerization. 2. Structure-activity relationships and molecular modeling studies, J. Med. Chem. 49 (2006) 947-954.
-
[2]
[2] A. Gangjee, Y. Zeng, T. Talreja, et al., Design and synthesis of classical and nonclassical 6-arylthio-2,4-diamino-5-ethylpyrrolo[2,3-d]pyrimidines as antifolates, J. Med. Chem. 50 (2007) 3046-3053.
-
[3]
[3] S.F. Nielsen, E.Ø. Nielsen, G.M. Olsen, T. Liljefors, D. Peters, Novel potent ligands for the central nicotinic acetylcholine receptor: synthesis, receptor binding, and 3DQSAR analysis, J. Med. Chem. 43 (2000) 2217-2226.
-
[4]
[4] S.W. Kaldor, V.J. Kalish, J.F. Davies, et al., Viracept (Nelfinavir Mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease, J. Med. Chem. 40 (1997) 3979-3985.
-
[5]
[5] S.V. Ley, A.W. Thomas, Modern synthetic methods for copper-mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S bond formation, Angew. Chem. Int. Ed. 42 (2003) 5400-5449.
-
[6]
[6] H. Firouzabadi, A. Jamalian, Reduction of oxygenated organosulfur compounds, J. Sulfur Chem. 29 (2008) 53-97.
-
[7]
[7] Y. Yatsumonji, O. Okada, A. Tsubouchi, T. Takeda, Stereo-recognizing transformation of (E)-alkenyl halides into sulfides catalyzed by nickel(0) triethyl phosphite complex, Tetrahedron 62 (2006) 9981-9987.
-
[8]
[8] X.B. Xu, J. Liu, J.J. Zhang, Y.W. Wang, Y. Peng, Nickel-mediated inter-and intramolecular C-S coupling of thiols and thioacetates with aryl iodides at room temperature, Org. Lett. 15 (2013) 550-553.
-
[9]
[9] P. Guan, C. Cao, Y. Liu, et al., Efficient nickel/N-heterocyclic carbene catalyzed C-S cross-coupling, Tetrahedron Lett. 53 (2012) 5987-5992.
-
[10]
[10] J. She, Z. Jiang, Y.G. Wang, Simple, efficient and recyclable catalytic system for performing copper-catalyzed C-S coupling of thiols with aryl iodides in PEG and PEG-H2O, Tetrahedron Lett. 50 (2009) 593-596.
-
[11]
[11] Z. Jiang, J. She, X.F. Lin, Palladium on charcoal as a recyclable catalyst for C-S crosscoupling of thiols with aryl halides under ligand-free conditions, Adv. Synth. Catal. 351 (2009) 2558-2562.
-
[12]
[12] N. Park, K. Park, M. Jang, S. Lee, One-pot synthesis of symmetrical and unsymmetrical aryl sulfides by Pd-catalyzed couplings of aryl halides and thioacetates, J. Org. Chem. 76 (2011) 4371-4378.
-
[13]
[13] V.P. Reddy, K. Swapna, A.V. Kumar, K.R. Rao, Lanthanum-catalyzed stereoselective synthesis of vinyl sulfides and selenides, Tetrahedron Lett. 51 (2010) 293-296.
-
[14]
[14] V.P. Reddy, K. Swapna, A.V. Kumar, K.R. Rao, Indium-catalyzed C-S cross-coupling of aryl halides with thiols, J. Org. Chem. 74 (2009) 3189-3191.
-
[15]
[15] D. Kundu, S. Ahammed, B.C. Ranu, Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate: a general procedure for the synthesis of unsymmetrical diaryl chalcogenides, Green Chem. 14 (2012) 2024-2030.
-
[16]
[16] M.T. Lan, W.Y. Wu, S.H. Huang, K.L. Luo, F.Y. Tsai, Reusable and efficient CoCl2 6H2O/cationic 2,20-bipyridyl system-catalyzed S-arylation of aryl halides with thiols in water under air, RSC Adv. 1 (2011) 1751-1755.
-
[17]
[17] H.J. Xu, Y.F. Liang, X.F. Zhou, Y.S. Feng, Efficient recyclable CuI-nanoparticlecatalyzed S-arylation of thiols with aryl halides on water under mild conditions, Org. Biomol. Chem. 10 (2012) 2562-2568.
-
[18]
[18] Y.C. Wong, T.T. Jayanth, C.H. Cheng, Cobalt-catalyzed aryl-sulfur bond formation, Org. Lett. 8 (2006) 5613-5616.
-
[19]
[19] M. Arisawa, T. Suzuki, T. Ishikawa, M. Yamaguchi, Rhodium-catalyzed substitution reaction of aryl fluorides with disulfides: P-orientation in the polyarylthiolation of polyfluorobenzenes, J. Am. Chem. Soc. 130 (2008) 12214-12215.
-
[20]
[20] T. Itoh, T. Mase, A general palladium-catalyzed coupling of aryl bromides/triflates and thiols, Org. Lett. 6 (2004) 4587-4590.
-
[21]
[21] V.K. Akkilagunta, R.R. Kakulapati, Synthesis of unsymmetrical sulfides using ethyl potassium xanthogenate and recyclable copper catalyst under ligand-free conditions, J. Org. Chem. 76 (2011) 6819-6824.
-
[22]
[22] D.J.C. Prasad, G. Sekar, Cu-catalyzed one-pot synthesis of unsymmetrical diaryl thioethers by coupling of aryl halides using a thiol precursor, Org. Lett. 13 (2011) 1008-1011.
-
[23]
[23] H. Firouzabadi, N. Iranpoor, M. Gholinejad, A. Samadi, Copper(I) iodide catalyzes odorless thioarylation of phenolic esters with alkyl derivatives using thiourea in wet polyethylene glycol (PEG 200), J. Mol. Catal. A: Chem. 377 (2013) 190-196.
-
[24]
[24] X.M. Wu, W.Y. Hu, Direct synthesis of diaryl sulfides by copper-catalyzed coupling of aryl halides with aminothiourea, Chin. Chem. Lett. 23 (2012) 391-394.
-
[25]
[25] P.S. Luo, M. Yu, R.Y. Tang, P. Zhong, J.H. Li, Solvent-free copper-catalyzed oxidative S-arylation of 1,2-diaryldisulfides with aryltrimethoxysilane, Tetrahedron Lett. 50 (2009) 1066-1070.
-
[26]
[26] K.H.V. Reddy, V.P. Reddy, J. Shankar, et al., Copper oxide nanoparticles catalyzed synthesis of aryl sulfides via cascade reaction of aryl halides with thiourea, Tetrahedron Lett. 52 (2011) 2679-2682.
-
[27]
[27] D.S. Su, J. Zhang, B. Frank, et al., Metal-free heterogeneous catalysis for sustainable chemistry, ChemSusChem 3 (2010) 169-180.
-
[28]
[28] C. Copéret, M. Chabanas, R. Petroff Saint-Arroman, J.M. Basset, Surface organometallic chemistry: homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry, Angew. Chem. Int. Ed. 42 (2003) 156-181.
-
[29]
[29] D. Rosenthal, Functional surfaces in heterogeneous catalysis: a short review, Phys. Status Solidi A 208 (2011) 1217-1222.
-
[30]
[30] H. Wang, Z. Liu, Progress in combinatorial heterogeneous catalysis, Prog. Chem. 15 (2003) 256-263.
-
[31]
[31] Y.P. Zhang, A.H. Shi, Y.S. Yang, C.L. Li, Impregnated copper on magnetite as catalyst for the O-arylation of phenols with aryl halides, Chin. Chem. Lett. 25 (2014) 141-145.
-
[32]
[32] A. Rostami, B. Tahmasbi, H. Gholami, H. Taymorian, Supported N-propylsulfamic acid on magnetic nanoparticles used as recoverable and recyclable catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones in water, Chin. Chem. Lett. 24 (2013) 211-214.
-
[33]
[33] T. Bligaard, J.K. Nørskov, Heterogeneous Catalysis in Chemical Bonding at Surfaces and Interfaces, Elsevier, Amsterdam, 2008, pp. 255-321.
-
[34]
[34] A.R. Hajipour, H. Karimi, Synthesis and characterization of hexagonal zirconium phosphate nanoparticles, Mater. Lett. 116 (2014) 356-358.
-
[35]
[35] S. Shylesh, V. Schünemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.
-
[36]
[36] D. Astruc, F. Lu, J.R. Aranzaes, Nanoparticles as recyclable catalysts: the Frontier between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 44 (2005) 7852-7872.
-
[37]
[37] M.B. Gawande, P.S. Branco, R.S. Varma, Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies, Chem. Soc. Rev. 42 (2013) 3371-3393.
-
[38]
[38] S.M. Baghbanian, M. Farhang, CuFe2O4 nanoparticles: a magnetically recoverable and reusable catalyst for the synthesis of coumarins via Pechmann reaction in water, Syn. Commun. 44 (2013) 697-706.
-
[39]
[39] B. Karami, S.J. Hoseini, S. Nikoseresht, S. Khodabakhshi, Fe3O4 nanoparticles: a powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes, Chin. Chem. Lett. 23 (2012) 173-176.
-
[40]
[40] D. Kundu, T. Chatterjee, B.C. Ranu, Magnetically separable CuFe2O4 nanoparticles catalyzed ligand-free C-S coupling in water: access to (E)-and (Z)-styrenyl-, heteroaryl and sterically hindered aryl sulfides, Adv. Synth. Catal. 355 (2013) 2285-2296.
-
[41]
[41] F. Nemati, R. Saeedirad, Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for green and efficient synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyr-imidines in water, Chin. Chem. Lett. 24 (2013) 370-372.
-
[42]
[42] F.P. Ma, P.H. Li, B.L. Li, et al., A recyclable magnetic nanoparticles supported antimony catalyst for the synthesis of N-substituted pyrroles in water, Appl. Catal. A: Gen. 457 (2013) 34-41.
-
[43]
[43] P.H. Li, B.L. Li, Z.M. An, et al., Magnetic nanoparticles (CoFe2O4)-supported phosphomolybdate as an efficient, green, recyclable catalyst for synthesis of b-hydroxy hydroperoxides, Adv. Synth. Catal. 355 (2013) 2952-2959.
-
[44]
[44] C. Feng, H.Y. Zhang, N.Z. Shang, S.T. Gao, C. Wang, Magnetic graphene nanocomposite as an efficient catalyst for hydrogenation of nitroarenes, Chin. Chem. Lett. 24 (2013) 539-541.
-
[45]
[45] H. Jiao, G.S. Jiao, J.L. Wang, Preparation and magnetic properties of CuFe2O4 nanoparticles, Syn. React. Inorg. Met. 43 (2013) 131-134.
-
[46]
[46] R. Parella, Naveen, A. Kumar, S.A. Babu, Catalytic Friedel-Crafts acylation: magnetic nanopowder CuFe2O4 as an efficient and magnetically separable catalyst, Tetrahedron Lett. 54 (2013) 1738-1742.
-
[47]
[47] Z.P. Sun, L. Liu, D.Z. Jia, W.Y. Pan, Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials, Sens. Actuators B: Chem. 125 (2007) 144-148.
-
[48]
[48] K. Swapna, S.N. Murthy, M.T. Jyothi, Y.V.D. Nageswar, Nano-CuFe2O4 as a magnetically separable and reusable catalyst for the synthesis of diaryl/aryl alkyl sulfides via cross-coupling process under ligand-free conditions, Org. Biomol. Chem. 9 (2011) 5989-5996.
-
[49]
[49] D. Kundu, N. Mukherjee, B.C. Ranu, A general and green procedure for the synthesis of organochalcogenides by CuFe2O4 nanoparticle catalysed coupling of organoboronic acids and dichalcogenides in PEG-400, RSC Adv. 3 (2013) 117-125.
-
[50]
[50] H. Firouzabadi, N. Iranpoor, M. Gholinejad, One-pot thioetherification of aryl halides using thiourea and alkyl bromides catalyzed by copper(I) iodide free from foul-smelling thiols in wet polyethylene glycol (PEG 200), Adv. Synth. Catal. 352 (2010) 119-124.
-
[51]
[51] J. Mondal, A. Modak, A. Dutta, et al., One-pot thioetherification of aryl halides with thiourea and benzyl bromide in water catalyzed by Cu-grafted furfural iminefunctionalized mesoporous SBA-15, Chem. Commun. 48 (2012) 8000-8002.
-
[52]
[52] M. Soleiman-Beigi, M. Alikarami, F. Mohammadi, A. Izadi, CuI-catalyzed, symmetrical diaryl sulfides synthesis from aryl halides in the presence of KF/Al2O3: using thiourea and thiosemicarbazide as sulfur donor sources, Lett. Org. Chem. 10 (2013) 622-625.
-
[53]
[53] H. Firouzabadi, N. Iranpoor, M. Abbasi, A facile generation of C-S bonds via onepot, odourless and efficient thia-Michael addition reactions using alkyl, aryl or allyl halides, thiourea and electron-deficient alkenes in wet polyethylene glycol (PEG 200) under mild reaction conditions, Tetrahedron 65 (2009) 5293-5301.
-
[54]
[54] A. Kamal, V. Srinivasulu, J.N.S.R.C. Murty, et al., Copper oxide nanoparticles supported on graphene oxide-catalyzed S-arylation: an efficient and ligand-free synthesis of aryl sulfides, Adv. Synth. Catal. 355 (2013) 2297-2307.
-
[55]
[55] S. Tao, F. Gao, X. Liu, O.T. Sørensen, Preparation and gas-sensing properties of CuFe2O4 at reduced temperature, Mater. Sci. Eng. B: Solid 77 (2000) 172-176.
-
[56]
[56] N. Taniguchi, Copper-catalyzed chalcogenation of aryl iodides via reduction of chalcogen elements by aluminum or magnesium, Tetrahedron 68 (2012) 10510-10515.
-
[57]
[57] K.H.V. Reddy, V.R. Prakash, A.A. Kumar, G. Kranthi, Y.V.D. Nageswar, Nano copper oxide catalyzed synthesis of symmetrical diaryl sulfides under ligand free conditions, Beilstein J. Org. Chem. 7 (2011) 886-891.
-
[58]
[58] P. Zhao, H. Yin, H. Gao, C. Xi, Cu-catalyzed synthesis of diaryl thioethers and Scycles by reaction of aryl iodides with carbon disulfide in the presence of DBU, J. Org. Chem. 78 (2013) 5001-5006.
-
[59]
[59] F. Ke, Y. Qu, Z. Jiang, et al., An efficient copper-catalyzed carbon-sulfur bond formation protocol in water, Org. Lett. 13 (2011) 454-457.
-
[60]
[60] B. Boduszek, J.S. Wieczorek, Synthesis of dipyridyl sulfides from pyridyl-pyridinium halides, Monatsh. Chem. 111 (1980) 1111-1116.
-
[1]
-
-
-
[1]
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332
-
[2]
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
-
[3]
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
-
[4]
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
-
[5]
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
-
[6]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[7]
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
-
[8]
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
-
[9]
Boqiang Wang , Yongzhuo Xu , Jiajia Wang , Muyang Yang , Guo-Jun Deng , Wen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502
-
[10]
A-Yang Wang , Sheng-Hua Zhou , Mao-Yin Ran , Xin-Tao Wu , Hua Lin , Qi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377
-
[11]
Tao Zhou , Jing Zhou , Yunyun Liu , Jie-Ping Wan , Fen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683
-
[12]
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
-
[13]
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
-
[14]
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
-
[15]
Tian Yang , Yi Liu , Lina Hua , Yaoyao Chen , Wuqian Guo , Haojie Xu , Xi Zeng , Changhao Gao , Wenjing Li , Junhua Luo , Zhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707
-
[16]
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405
-
[17]
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
-
[18]
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
-
[19]
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
-
[20]
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(733)
- HTML views(35)