Citation: Abdol R. Hajipour, Morteza Karimzadeh, Ghobad Azizi. Highly efficient and magnetically separable nano-CuFe2O4 catalyzed S-arylation of thiourea by aryl/heteroaryl halides[J]. Chinese Chemical Letters, ;2014, 25(10): 1382-1386. doi: 10.1016/j.cclet.2014.05.015 shu

Highly efficient and magnetically separable nano-CuFe2O4 catalyzed S-arylation of thiourea by aryl/heteroaryl halides

  • Corresponding author: Abdol R. Hajipour, 
  • Received Date: 20 February 2014
    Available Online: 29 April 2014

    Fund Project: We gratefully acknowledge the funding support received for this project from the Isfahan University of Technology (IUT) (IUT) IR Iran (A.R.H.) (A.R.H.)Grant GM 33138 (A.E.R.) from the National Institutes of Health, USA. Further financial support from the Center of Excellency in Chemistry Research (IUT) is gratefully acknowledged. (A.E.R.)

  • The non-toxic and magnetically separable nano-CuFe2O4 catalyzed synthesis of symmetrical aryl sulfides by the reaction of thiourea with a wide variety of aryl halides, including aryl chlorides has been reported. Excellent yields of products have been obtained under ligand-free conditions and without the use of any expensive catalyst, such as palladium.
  • 加载中
    1. [1]

      [1] G. de Martino, M.C. Edler, G. La Regina, et al., New arylthioindoles: potent inhibitors of tubulin polymerization. 2. Structure-activity relationships and molecular modeling studies, J. Med. Chem. 49 (2006) 947-954.

    2. [2]

      [2] A. Gangjee, Y. Zeng, T. Talreja, et al., Design and synthesis of classical and nonclassical 6-arylthio-2,4-diamino-5-ethylpyrrolo[2,3-d]pyrimidines as antifolates, J. Med. Chem. 50 (2007) 3046-3053.

    3. [3]

      [3] S.F. Nielsen, E.Ø. Nielsen, G.M. Olsen, T. Liljefors, D. Peters, Novel potent ligands for the central nicotinic acetylcholine receptor: synthesis, receptor binding, and 3DQSAR analysis, J. Med. Chem. 43 (2000) 2217-2226.

    4. [4]

      [4] S.W. Kaldor, V.J. Kalish, J.F. Davies, et al., Viracept (Nelfinavir Mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease, J. Med. Chem. 40 (1997) 3979-3985.

    5. [5]

      [5] S.V. Ley, A.W. Thomas, Modern synthetic methods for copper-mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S bond formation, Angew. Chem. Int. Ed. 42 (2003) 5400-5449.

    6. [6]

      [6] H. Firouzabadi, A. Jamalian, Reduction of oxygenated organosulfur compounds, J. Sulfur Chem. 29 (2008) 53-97.

    7. [7]

      [7] Y. Yatsumonji, O. Okada, A. Tsubouchi, T. Takeda, Stereo-recognizing transformation of (E)-alkenyl halides into sulfides catalyzed by nickel(0) triethyl phosphite complex, Tetrahedron 62 (2006) 9981-9987.

    8. [8]

      [8] X.B. Xu, J. Liu, J.J. Zhang, Y.W. Wang, Y. Peng, Nickel-mediated inter-and intramolecular C-S coupling of thiols and thioacetates with aryl iodides at room temperature, Org. Lett. 15 (2013) 550-553.

    9. [9]

      [9] P. Guan, C. Cao, Y. Liu, et al., Efficient nickel/N-heterocyclic carbene catalyzed C-S cross-coupling, Tetrahedron Lett. 53 (2012) 5987-5992.

    10. [10]

      [10] J. She, Z. Jiang, Y.G. Wang, Simple, efficient and recyclable catalytic system for performing copper-catalyzed C-S coupling of thiols with aryl iodides in PEG and PEG-H2O, Tetrahedron Lett. 50 (2009) 593-596.

    11. [11]

      [11] Z. Jiang, J. She, X.F. Lin, Palladium on charcoal as a recyclable catalyst for C-S crosscoupling of thiols with aryl halides under ligand-free conditions, Adv. Synth. Catal. 351 (2009) 2558-2562.

    12. [12]

      [12] N. Park, K. Park, M. Jang, S. Lee, One-pot synthesis of symmetrical and unsymmetrical aryl sulfides by Pd-catalyzed couplings of aryl halides and thioacetates, J. Org. Chem. 76 (2011) 4371-4378.

    13. [13]

      [13] V.P. Reddy, K. Swapna, A.V. Kumar, K.R. Rao, Lanthanum-catalyzed stereoselective synthesis of vinyl sulfides and selenides, Tetrahedron Lett. 51 (2010) 293-296.

    14. [14]

      [14] V.P. Reddy, K. Swapna, A.V. Kumar, K.R. Rao, Indium-catalyzed C-S cross-coupling of aryl halides with thiols, J. Org. Chem. 74 (2009) 3189-3191.

    15. [15]

      [15] D. Kundu, S. Ahammed, B.C. Ranu, Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate: a general procedure for the synthesis of unsymmetrical diaryl chalcogenides, Green Chem. 14 (2012) 2024-2030.

    16. [16]

      [16] M.T. Lan, W.Y. Wu, S.H. Huang, K.L. Luo, F.Y. Tsai, Reusable and efficient CoCl2 6H2O/cationic 2,20-bipyridyl system-catalyzed S-arylation of aryl halides with thiols in water under air, RSC Adv. 1 (2011) 1751-1755.

    17. [17]

      [17] H.J. Xu, Y.F. Liang, X.F. Zhou, Y.S. Feng, Efficient recyclable CuI-nanoparticlecatalyzed S-arylation of thiols with aryl halides on water under mild conditions, Org. Biomol. Chem. 10 (2012) 2562-2568.

    18. [18]

      [18] Y.C. Wong, T.T. Jayanth, C.H. Cheng, Cobalt-catalyzed aryl-sulfur bond formation, Org. Lett. 8 (2006) 5613-5616.

    19. [19]

      [19] M. Arisawa, T. Suzuki, T. Ishikawa, M. Yamaguchi, Rhodium-catalyzed substitution reaction of aryl fluorides with disulfides: P-orientation in the polyarylthiolation of polyfluorobenzenes, J. Am. Chem. Soc. 130 (2008) 12214-12215.

    20. [20]

      [20] T. Itoh, T. Mase, A general palladium-catalyzed coupling of aryl bromides/triflates and thiols, Org. Lett. 6 (2004) 4587-4590.

    21. [21]

      [21] V.K. Akkilagunta, R.R. Kakulapati, Synthesis of unsymmetrical sulfides using ethyl potassium xanthogenate and recyclable copper catalyst under ligand-free conditions, J. Org. Chem. 76 (2011) 6819-6824.

    22. [22]

      [22] D.J.C. Prasad, G. Sekar, Cu-catalyzed one-pot synthesis of unsymmetrical diaryl thioethers by coupling of aryl halides using a thiol precursor, Org. Lett. 13 (2011) 1008-1011.

    23. [23]

      [23] H. Firouzabadi, N. Iranpoor, M. Gholinejad, A. Samadi, Copper(I) iodide catalyzes odorless thioarylation of phenolic esters with alkyl derivatives using thiourea in wet polyethylene glycol (PEG 200), J. Mol. Catal. A: Chem. 377 (2013) 190-196.

    24. [24]

      [24] X.M. Wu, W.Y. Hu, Direct synthesis of diaryl sulfides by copper-catalyzed coupling of aryl halides with aminothiourea, Chin. Chem. Lett. 23 (2012) 391-394.

    25. [25]

      [25] P.S. Luo, M. Yu, R.Y. Tang, P. Zhong, J.H. Li, Solvent-free copper-catalyzed oxidative S-arylation of 1,2-diaryldisulfides with aryltrimethoxysilane, Tetrahedron Lett. 50 (2009) 1066-1070.

    26. [26]

      [26] K.H.V. Reddy, V.P. Reddy, J. Shankar, et al., Copper oxide nanoparticles catalyzed synthesis of aryl sulfides via cascade reaction of aryl halides with thiourea, Tetrahedron Lett. 52 (2011) 2679-2682.

    27. [27]

      [27] D.S. Su, J. Zhang, B. Frank, et al., Metal-free heterogeneous catalysis for sustainable chemistry, ChemSusChem 3 (2010) 169-180.

    28. [28]

      [28] C. Copéret, M. Chabanas, R. Petroff Saint-Arroman, J.M. Basset, Surface organometallic chemistry: homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry, Angew. Chem. Int. Ed. 42 (2003) 156-181.

    29. [29]

      [29] D. Rosenthal, Functional surfaces in heterogeneous catalysis: a short review, Phys. Status Solidi A 208 (2011) 1217-1222.

    30. [30]

      [30] H. Wang, Z. Liu, Progress in combinatorial heterogeneous catalysis, Prog. Chem. 15 (2003) 256-263.

    31. [31]

      [31] Y.P. Zhang, A.H. Shi, Y.S. Yang, C.L. Li, Impregnated copper on magnetite as catalyst for the O-arylation of phenols with aryl halides, Chin. Chem. Lett. 25 (2014) 141-145.

    32. [32]

      [32] A. Rostami, B. Tahmasbi, H. Gholami, H. Taymorian, Supported N-propylsulfamic acid on magnetic nanoparticles used as recoverable and recyclable catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones in water, Chin. Chem. Lett. 24 (2013) 211-214.

    33. [33]

      [33] T. Bligaard, J.K. Nørskov, Heterogeneous Catalysis in Chemical Bonding at Surfaces and Interfaces, Elsevier, Amsterdam, 2008, pp. 255-321.

    34. [34]

      [34] A.R. Hajipour, H. Karimi, Synthesis and characterization of hexagonal zirconium phosphate nanoparticles, Mater. Lett. 116 (2014) 356-358.

    35. [35]

      [35] S. Shylesh, V. Schünemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.

    36. [36]

      [36] D. Astruc, F. Lu, J.R. Aranzaes, Nanoparticles as recyclable catalysts: the Frontier between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 44 (2005) 7852-7872.

    37. [37]

      [37] M.B. Gawande, P.S. Branco, R.S. Varma, Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies, Chem. Soc. Rev. 42 (2013) 3371-3393.

    38. [38]

      [38] S.M. Baghbanian, M. Farhang, CuFe2O4 nanoparticles: a magnetically recoverable and reusable catalyst for the synthesis of coumarins via Pechmann reaction in water, Syn. Commun. 44 (2013) 697-706.

    39. [39]

      [39] B. Karami, S.J. Hoseini, S. Nikoseresht, S. Khodabakhshi, Fe3O4 nanoparticles: a powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes, Chin. Chem. Lett. 23 (2012) 173-176.

    40. [40]

      [40] D. Kundu, T. Chatterjee, B.C. Ranu, Magnetically separable CuFe2O4 nanoparticles catalyzed ligand-free C-S coupling in water: access to (E)-and (Z)-styrenyl-, heteroaryl and sterically hindered aryl sulfides, Adv. Synth. Catal. 355 (2013) 2285-2296.

    41. [41]

      [41] F. Nemati, R. Saeedirad, Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for green and efficient synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyr-imidines in water, Chin. Chem. Lett. 24 (2013) 370-372.

    42. [42]

      [42] F.P. Ma, P.H. Li, B.L. Li, et al., A recyclable magnetic nanoparticles supported antimony catalyst for the synthesis of N-substituted pyrroles in water, Appl. Catal. A: Gen. 457 (2013) 34-41.

    43. [43]

      [43] P.H. Li, B.L. Li, Z.M. An, et al., Magnetic nanoparticles (CoFe2O4)-supported phosphomolybdate as an efficient, green, recyclable catalyst for synthesis of b-hydroxy hydroperoxides, Adv. Synth. Catal. 355 (2013) 2952-2959.

    44. [44]

      [44] C. Feng, H.Y. Zhang, N.Z. Shang, S.T. Gao, C. Wang, Magnetic graphene nanocomposite as an efficient catalyst for hydrogenation of nitroarenes, Chin. Chem. Lett. 24 (2013) 539-541.

    45. [45]

      [45] H. Jiao, G.S. Jiao, J.L. Wang, Preparation and magnetic properties of CuFe2O4 nanoparticles, Syn. React. Inorg. Met. 43 (2013) 131-134.

    46. [46]

      [46] R. Parella, Naveen, A. Kumar, S.A. Babu, Catalytic Friedel-Crafts acylation: magnetic nanopowder CuFe2O4 as an efficient and magnetically separable catalyst, Tetrahedron Lett. 54 (2013) 1738-1742.

    47. [47]

      [47] Z.P. Sun, L. Liu, D.Z. Jia, W.Y. Pan, Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials, Sens. Actuators B: Chem. 125 (2007) 144-148.

    48. [48]

      [48] K. Swapna, S.N. Murthy, M.T. Jyothi, Y.V.D. Nageswar, Nano-CuFe2O4 as a magnetically separable and reusable catalyst for the synthesis of diaryl/aryl alkyl sulfides via cross-coupling process under ligand-free conditions, Org. Biomol. Chem. 9 (2011) 5989-5996.

    49. [49]

      [49] D. Kundu, N. Mukherjee, B.C. Ranu, A general and green procedure for the synthesis of organochalcogenides by CuFe2O4 nanoparticle catalysed coupling of organoboronic acids and dichalcogenides in PEG-400, RSC Adv. 3 (2013) 117-125.

    50. [50]

      [50] H. Firouzabadi, N. Iranpoor, M. Gholinejad, One-pot thioetherification of aryl halides using thiourea and alkyl bromides catalyzed by copper(I) iodide free from foul-smelling thiols in wet polyethylene glycol (PEG 200), Adv. Synth. Catal. 352 (2010) 119-124.

    51. [51]

      [51] J. Mondal, A. Modak, A. Dutta, et al., One-pot thioetherification of aryl halides with thiourea and benzyl bromide in water catalyzed by Cu-grafted furfural iminefunctionalized mesoporous SBA-15, Chem. Commun. 48 (2012) 8000-8002.

    52. [52]

      [52] M. Soleiman-Beigi, M. Alikarami, F. Mohammadi, A. Izadi, CuI-catalyzed, symmetrical diaryl sulfides synthesis from aryl halides in the presence of KF/Al2O3: using thiourea and thiosemicarbazide as sulfur donor sources, Lett. Org. Chem. 10 (2013) 622-625.

    53. [53]

      [53] H. Firouzabadi, N. Iranpoor, M. Abbasi, A facile generation of C-S bonds via onepot, odourless and efficient thia-Michael addition reactions using alkyl, aryl or allyl halides, thiourea and electron-deficient alkenes in wet polyethylene glycol (PEG 200) under mild reaction conditions, Tetrahedron 65 (2009) 5293-5301.

    54. [54]

      [54] A. Kamal, V. Srinivasulu, J.N.S.R.C. Murty, et al., Copper oxide nanoparticles supported on graphene oxide-catalyzed S-arylation: an efficient and ligand-free synthesis of aryl sulfides, Adv. Synth. Catal. 355 (2013) 2297-2307.

    55. [55]

      [55] S. Tao, F. Gao, X. Liu, O.T. Sørensen, Preparation and gas-sensing properties of CuFe2O4 at reduced temperature, Mater. Sci. Eng. B: Solid 77 (2000) 172-176.

    56. [56]

      [56] N. Taniguchi, Copper-catalyzed chalcogenation of aryl iodides via reduction of chalcogen elements by aluminum or magnesium, Tetrahedron 68 (2012) 10510-10515.

    57. [57]

      [57] K.H.V. Reddy, V.R. Prakash, A.A. Kumar, G. Kranthi, Y.V.D. Nageswar, Nano copper oxide catalyzed synthesis of symmetrical diaryl sulfides under ligand free conditions, Beilstein J. Org. Chem. 7 (2011) 886-891.

    58. [58]

      [58] P. Zhao, H. Yin, H. Gao, C. Xi, Cu-catalyzed synthesis of diaryl thioethers and Scycles by reaction of aryl iodides with carbon disulfide in the presence of DBU, J. Org. Chem. 78 (2013) 5001-5006.

    59. [59]

      [59] F. Ke, Y. Qu, Z. Jiang, et al., An efficient copper-catalyzed carbon-sulfur bond formation protocol in water, Org. Lett. 13 (2011) 454-457.

    60. [60]

      [60] B. Boduszek, J.S. Wieczorek, Synthesis of dipyridyl sulfides from pyridyl-pyridinium halides, Monatsh. Chem. 111 (1980) 1111-1116.

  • 加载中
    1. [1]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    2. [2]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    3. [3]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    4. [4]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    5. [5]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    8. [8]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    9. [9]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    10. [10]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    11. [11]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    12. [12]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    13. [13]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    14. [14]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    15. [15]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    16. [16]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    17. [17]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    18. [18]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    19. [19]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    20. [20]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

Metrics
  • PDF Downloads(0)
  • Abstract views(733)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return