Citation: Li-Cai Zhao, Zhi-Qiang Hou, Chun-Ze Liu, Yuan-Yuan Wang, Li-Yi Dai. A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol[J]. Chinese Chemical Letters, ;2014, 25(10): 1395-1398. doi: 10.1016/j.cclet.2014.05.012 shu

A catalyst-free novel synthesis of diethyl carbonate from ethyl carbamate in supercritical ethanol

  • Corresponding author: Yuan-Yuan Wang,  Li-Yi Dai, 
  • Received Date: 21 January 2014
    Available Online: 4 May 2014

  • Diethyl carbonate has been synthesized via the alcoholysis of ethyl carbamate in supercritical ethanol under catalyst-free conditions. The influences of various parameters such as reaction temperature, reaction time, reaction pressure, ethanol/ethyl molar ratios and reaction loading volume on the yield of DEC were studied systematically. The experimental results indicated that the alcoholysis of ethyl carbamate was greatly improved in supercritical ethanol. The optimal reaction conditions were as follows: a reaction temperature of 573 K, a reaction time of 30 min, a reaction pressure of 13.2 MPa, an ethanol/ethyl carbamate molar ratio of 10 and a reactor loading volume of 285 μL respectively. The optimal yield of DEC was 22.9%.
  • 加载中
    1. [1]

      [1] B.C. Dunn, C. Guenneau, S.A. Hilton, et al., Production of diethyl carbonate from ethanol and carbon monoxide over a heterogeneous catalyst, Energy Fuels 16 (2002) 177-181.

    2. [2]

      [2] J.X. Zhen, S.Y. Hua, C.S. Hua, Novel synthesis of diethyl carbonate over palladium/ MCM-41 catalysts, Catal. Lett. 69 (2000) 153-156.

    3. [3]

      [3] T.J. Bruno, A. Wolk, A. Naydich, et al., Composition-explicit distillation curves for mixtures of diesel fuel with dimethyl carbonate and diethyl carbonate, Energy Fuels 23 (2009) 3989-3997.

    4. [4]

      [4] A.A.G. Shaikh, Organic carbonates, Chem. Rev. 96 (1996) 951-976.

    5. [5]

      [5] P.B. Zhang, Z. Zhang, S.P. Wang, et al., A new type of catalyst PdCl2/Cu-HMS for synthesis of diethyl carbonate by oxidative carbonylation of ethanol, Catal. Commun. 8 (2007) 21-26.

    6. [6]

      [6] H. Krimm, H.J. Buysch, H. Rudolph, Process for the preparation of dialkyl carbonates, U.S. Patent 4,307,032, Dec. 22, 1981

    7. [7]

      [7] W.B. Zhao, W.C. Peng, D.F. Wang, et al., Zinc oxide as the precursor of homogenous catalyst for synthesis of dialkyl carbonate from urea and alcohols, Catal. Commun. 10 (2009) 655-658.

    8. [8]

      [8] M.H. Wang, N. Zhao, W. Wei, et al., Synthesis of dimethyl carbonate from urea and methanol over ZnO, Ind. Eng. Chem. Res. 44 (2005) 7596-7599.

    9. [9]

      [9] J. Sun, B. Yang, H. Lin, A semi-continuous process for the synthesis of methyl carbamate from urea and methanol, Chem. Eng. Technol. 27 (2004) 435-439.

    10. [10]

      [10] C.C. Wu, X.Q. Zhao, Y.J. Wang, Effect of reduction treatment on catalytic performance of Zn-based catalyst for the alcoholysis of urea to dimethyl carbonate, Catal. Commun. 6 (2005) 694-698.

    11. [11]

      [11] D.P. Wang, B.L. Wang, X.W. Zhai, et al., Synthesis of diethyl carbonate by catalytic alcoholysis of urea, Fuel Process. Technol. 88 (2007) 807-812.

    12. [12]

      [12] H.L. Zhao, X.Q. Zhao, H.L. An, et al., Synthesis of diethyl carbonate from ethyl carbamate and ethanol over leadoxide catalyst, Petrochem. Technol. 38 (2009) 139-144.

    13. [13]

      [13] H.L. An, X.Q. Zhao, L. Guo, et al., Synthesis of diethyl carbonate from ethyl carbamate and ethanol over ZnO-PbO catalyst, Appl. Catal. A. 433/434 (2012) 229-235.

    14. [14]

      [14] G. Brunner, Applications of supercritical fluids, Annu. Rev. Chem. Biomol. Eng. 1 (2010) 321-342.

    15. [15]

      [15] M.M. Gui, K.T. Lee, S. Bhatia, Supercritical ethanol technology for the production of biodiesel: process optimization studies, J. Supercrit. Fluids 49 (2009) 286-292.

    16. [16]

      [16] H. Jie, H. Ke, Z. Qing, et al., Study on depolymerization of polycarbonate in supercritical ethanol, Polym. Degrad. Stab. 91 (2006) 2307e2314.

    17. [17]

      [17] G. Madras, C. Kolluru, R. Kumar, Synthesis of biodiesel in supercritical fluids, Fuel 83 (2004) 2029-2033.

    18. [18]

      [18] D. Dellis, M. Chalaris, J. Samios, Pressure and temperature dependence of the hydrogen bonding in supercritical ethanol: a computer simulation study, J. Phys. Chem. B 109 (2005) 18575-18590.

    19. [19]

      [19] J. Lu, E.C. Boughner, Nearcritical and supercritical ethanol as a benign solvent: polarity and hydrogen-bonding, Fluid Phase Equilib. 198 (2002) 37-49.

    20. [20]

      [20] P. Lalanne, J.M. Andanson, J.C. Soetens, et al., Hydrogen bonding in supercritical ethanol assessed by infrared and Raman spectroscopies, J. Phys. Chem. A 108 (2004) 3902-3909.

    21. [21]

      [21] Y.Y. Gao, W.C. Peng, N. Zhao, et al., A DFT study on the reaction mechanism for dimethyl carbonate synthesis from methyl carbamate and methanol, J. Mol. Catal. A: Chem. 351 (2011) 29-40.

  • 加载中
    1. [1]

      Yating ZhengYulan HuangJing LuoXuqi PengXiran GuiGang LiuYang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169

    2. [2]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    3. [3]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    4. [4]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    5. [5]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    6. [6]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    7. [7]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    8. [8]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    9. [9]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

Metrics
  • PDF Downloads(0)
  • Abstract views(694)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return