Citation: Hui-Ying Liu, Miao Zhao, Qing-Long Qiao, Hai-Jing Lang, Jing-Zhe Xu, Zhao-Chao Xu. Fluorescein-derived fl uorescent probe for cellular hydrogen sulfi de imaging[J]. Chinese Chemical Letters, ;2014, 25(7): 1060-1064. doi: 10.1016/j.cclet.2014.05.010 shu

Fluorescein-derived fl uorescent probe for cellular hydrogen sulfi de imaging

  • Corresponding author: Jing-Zhe Xu,  Zhao-Chao Xu, 
  • Received Date: 24 January 2014
    Available Online: 4 April 2014

    Fund Project: We thank financial supports from the National Natural Science Foundation of China (No. 21276251) (No. 21276251)

  • In this work, a fluorescein-derived fluorescent probe for H2S based on the thiolysis of dinitrophenyl ether is reported. This probe exhibits turn-on fluorescence imaging of H2S in living cells and bulk solutions with excellent selectivity. The reaction mechanism was explained by means of absorption, fluorescence and HPLC-MS.
  • 加载中
    1. [1]

      [1] H. Kimura, Hydrogen sulfide: its production, release and functions, Amino Acids 41 (2011) 113-121.

    2. [2]

      [2] L. Li, P. Rose, P.K. Moore, Hydrogen sulfide and cell signaling, Annu. Rev. Pharmacol. Toxicol. 51 (2011) 169-187.

    3. [3]

      [3] R.A. Dombkowski, M.J. Russell, K.R. Olson, Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout, Am. J. Physiol. Regul. Integr. Comp. Physiol. 286 (2004) R678-R685.

    4. [4]

      [4] Y. Kaneko, Y. Kimura, H. Kimura, I. Niki, L-Cysteine inhibits insulin release from the pancreatic β-cell: possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter, Diabetes 55 (2006) 1391-1397.

    5. [5]

      [5] R.C.O. Zanardo, V. Brancaleone, E. Distrutti, et al., Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation, FASEB J. 20 (2006) 2118-2120.

    6. [6]

      [6] K. Eto, T. Asada, K. Arima, T. Makifuchi, H. Kimura, Brain hydrogen sulfide is severely decreased in Alzheimer's disease, Biochem. Biophys. Res. Commun. 293 (2002) 1485-1488.

    7. [7]

      [7] P. Kamoun, M.C. Belardinelli, A. Chabli, K. Lallouchi, B. Chadefaux-Vekemans, Endogenous hydrogen sulfide overproduction in Down syndrome, Am. J. Med. Genet. A 116A (2003) 310-311.

    8. [8]

      [8] W. Yang, G. Yang, X. Jia, L. Wu, R. Wang, Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms, J. Physiol. 569 (2005) 519-531.

    9. [9]

      [9] S. Fiorucci, E. Antonelli, A. Mencarelli, et al., The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis, Hepatology 42 (2005) 539-548.

    10. [10]

      [10] C. Szabo, Hydrogen sulphide and its therapeutic potential, Nat. Rev. Drug Discov. 6 (2007) 917-935.

    11. [11]

      [11] H. Peng, W. Chen, S. Burroughs, B. Wang, Recent advances in fluorescent probes for the detection of hydrogen sulfide, Curr. Org. Chem. 17 (2013) 641-653.

    12. [12]

      [12] A.R. Lippert, Designing reaction-based fluorescent probes for selective hydrogen sulfide detection, J. Inorg. Biochem. 133 (2014) 136-142.

    13. [13]

      [13] V.S. Lin, C.J. Chang, Fluorescent probes for sensing and imaging biological hydrogen sulfide, Curr. Opin. Chem. Biol. 16 (2012) 595-601.

    14. [14]

      [14] N. Kumar, V. Bhalla, M. Kumar, Recent developments of fluorescent probes for the detection of gasotransmitters (NO, CO and H2S), Coord. Chem. Rev. 257 (2013) 2335-2347.

    15. [15]

      [15] T. Chen, Y. Zheng, Z. Xu, et al., A red emission fluorescent probe for hydrogen sulfide and its application in living cells imaging, Tetrahedron Lett. 54 (2013) 2980-2982.

    16. [16]

      [16] Y. Zheng, M. Zhao, Q. Qiao, et al., A near-infrared fluorescent probe for hydrogen sulfide in living cells, Dyes Pigments 98 (2013) 367-371.

    17. [17]

      [17] Y.H. Li, J.F. Yang, C.H. Liu, J.S. Li, R.H. Yang, Colorimetric and fluorescent detection of biological thiols in aqueous solution, Chin. Chem. Lett. 24 (2013) 96-98.

    18. [18]

      [18] Q. Liu, L. Xue, D.J. Zhu, G.P. Li, H. Jiang, Highly selective two-photon fluorescent probe for imaging of nitric oxide in living cells, Chin. Chem. Lett. 25 (2014) 19-23.

    19. [19]

      [19] S. Wu, Y.J. Wei, Y.B. Wang, et al., Ratiometric and selective two-photon fluorescent probe based on PET-ICT for imaging Zn2+ in living cells and tissues, Chin. Chem. Lett. 25 (2014) 93-98.

    20. [20]

      [20] X.H. Yang, S. Sun, P. Liu, et al., A novel fluorescent detection for PDGF-BB based on dsDNA-templated copper nanoparticles, Chin. Chem. Lett. 25 (2014) 9-14.

    21. [21]

      [21] H. Zheng, X.Q. Zhan, Q.N. Bian, X.J. Zhang, Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors, Chem. Commun. 49 (2013) 429-447.

    22. [22]

      [22] X. Chen, T. Pradhan, F. Wang, J.S. Kim, J. Yoon, Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives, Chem. Rev. 112 (2011) 1910-1956.

    23. [23]

      [23] G.M. van Dam, G. Themelis, L.M.A. Crane, et al., Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-[alpha] targeting: first in-human results, Nat. Med. 17 (2011) 1315-1319.

    24. [24]

      [24] V. Dujols, F. Ford, A.W. Czarnik, A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water, J. Am. Chem. Soc. 119 (1997) 7386-7387.

    25. [25]

      [25] Z.X. Han, B.S. Zhu, T.L. Wu, et al., A fluorescent probe for Hg2+ sensing in solutions and living cells with a wide working pH range, Chin. Chem. Lett. 25 (2014) 73-76.

    26. [26]

      [26] C. Liu, J. Pan, S. Li, et al., Capture and visualization of hydrogen sulfide by a fluorescent probe, Angew. Chem. Int. Ed. 50 (2011) 10327-10329.

    27. [27]

      [27] J. Zhang, Y.Q. Sun, J. Liu, Y. Shi, W. Guo, A fluorescent probe for the biological signaling molecule H2S based on a specific H2S trap group, Chem. Commun. 49 (2013) 11305-11307.

    28. [28]

      [28] C. Wei, Q. Zhu, W. Liu, et al., NBD-based colorimetric and fluorescent turn-on probes for hydrogen sulfide, Org. Biomol. Chem. 12 (2014) 479-485.

    29. [29]

      [29] C. Liu, B. Peng, S. Li, et al., Reaction based fluorescent probes for hydrogen sulfide, Org. Lett. 14 (2012) 2184-2187.

    30. [30]

      [30] T. Liu, Z. Xu, D.R. Spring, J. Cui, A lysosome-targetable fluorescent probe for imaging hydrogen sulfide in living cells, Org. Lett. 15 (2013) 2310-2313.

    31. [31]

      [31] T. Liu, X. Zhang, Q. Qiao, et al., A two-photon fluorescent probe for imaging hydrogen sulfide in living cells, Dyes Pigments 99 (2013) 537-542.

  • 加载中
    1. [1]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    2. [2]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    3. [3]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    4. [4]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    5. [5]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    6. [6]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    7. [7]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    8. [8]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    9. [9]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    10. [10]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    11. [11]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    12. [12]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    13. [13]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    14. [14]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    15. [15]

      Hui ZhangRong FengWanyi YuHongbei WeiTianhong WuPeng ZhangWenhai BianXin LiDi GaoGuojun WengZhe YangTony D. JamesXiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528

    16. [16]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    17. [17]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    18. [18]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    19. [19]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    20. [20]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

Metrics
  • PDF Downloads(0)
  • Abstract views(616)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return