Citation: Hao Yang, Da Shi, Sheng-Fu Ji, Dan-Ni Zhang, Xue-Fei Liu. Nanosized Pd assembled on superparamagnetic core-shell microspheres:Synthesis, characterization and recyclable catalytic properties for the Heck reaction[J]. Chinese Chemical Letters, ;2014, 25(9): 1265-1270. doi: 10.1016/j.cclet.2014.05.003 shu

Nanosized Pd assembled on superparamagnetic core-shell microspheres:Synthesis, characterization and recyclable catalytic properties for the Heck reaction

  • Corresponding author: Sheng-Fu Ji, 
  • Received Date: 31 January 2014
    Available Online: 29 April 2014

    Fund Project: Financial support from the National Natural Science Foundation of China (No. 21173018) is gratefully acknowledged. (No. 21173018)

  • A series of magnetically recyclable Pd/Fe3O4@γ-Al2O3 catalysts were synthesized using the superparamagnetic Fe3O4@γ-Al2O3 core-shell microspheres as the supporter and nano-Pd particles assembled on γ-Al2O3 shell as the active catalytic component. The structure of the catalysts was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and vibrating sample magnetometer (VSM). The catalytic activity and the recyclability properties of the catalysts for the Heck coupling reaction with aryl bromides and the olefins were investigated. The results show that the microspheres of the magnetic Pd/Fe3O4@γ-Al2O3 catalysts were about 400 nm and the nano-Pd particles assembled on γ-Al2O3 shell were about 3-4 nm in size. The saturation magnetization (MS) of the magnetic catalysts was sufficiently high to allow magnetic separations. In the Heck coupling reactions, the magnetic Pd/Fe3O4@γ-Al2O3 catalysts exhibited good catalytic activity and recyclability. With Pd/Fe3O4@γ-Al2O3 (0.021 mol%) catalyst, the bromobenzene conversion and product yield reached about 96.8% and 91.2%, respectively, at 120℃ and in 14 h. After being recycled for six times, the conversion of bromobenzene and the recovery of the catalyst were about 80% and 90%, respectively. The nano-Pd particles were kept well dispersed in the used Pd/Fe3O4@γ-Al2O3 catalysts.
  • 加载中
    1. [1]

      [1] T. Mizoroki, K. Mori, A. Ozaki, Arylation of olefin with aryl iodide catalyzed by palladium, Bull. Chem. Soc. Jpn. 44 (1971) 581.

    2. [2]

      [2] R.F. Heck, J.P. Nolley, Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides, J. Org. Chem. 37 (1972) 2320-2322.

    3. [3]

      [3] R.A. Sheldon, H. van Bekkum, Fine Chemicals Through Heterogeneous Catalysis, Wiley-VCH, Weinheim, 2001.

    4. [4]

      [4] L.X. Yin, J. Liebscher, Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts, Chem. Rev. 107 (2007) 133-173.

    5. [5]

      [5] Z.H. Li, J. Chen, W.P. Su, M.C. Hong, A titania-supported highly dispersed palladium nano-catalyst generated via in situ reduction for efficient Heck coupling reaction, J. Mol. Catal. A: Chem. 328 (2010) 93-98.

    6. [6]

      [6] P.Y. Wang, X.P. Zheng, Pd/SBA-15 nanocomposite: synthesis, structure and catalytic properties in Heck reactions, Powder Technol. 210 (2011) 115-121.

    7. [7]

      [7] X.J. Feng, M. Yan, X. Zhang, M. Bao, Preparation and application of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide, Chin. Chem. Lett. 22 (2011) 643-646.

    8. [8]

      [8] M. Bakherad, S. Jajarmi, A dithizone-functionalized polystyrene resin-supported Pd(II) complex as an effective catalyst for Suzuki, Heck, and copper-free Sonogashira reactions under aerobic conditions in water, J. Mol. Catal. A: Chem. 370 (2013) 152-159.

    9. [9]

      [9] A. Molnar, A. Papp, Efficient heterogeneous palladium-montmorillonite catalysts for heck coupling of aryl bromides and chlorides, Syn. Lett. 18 (2006) 3130-3134.

    10. [10]

      [10] J.H. Ji, S.F. Ji, W. Yang, C.Y. Li, Preparation and application of magnetic Fe3O4 nanocrystalline, Prog. .Chem. 22 (2010) 1566-1574.

    11. [11]

      [11] B. Baruwati, D. Guin, S.V. Manorama, Pd on surface-modified NiFe2O4 nanoparticles: a magnetically recoverable catalyst for Suzuki and Heck reactions, Org. Lett. 9 (26) (2007) 5377-5380.

    12. [12]

      [12] J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon, Synthesis of monodisperse spherical nanocrystals, Angew. Chem. Int. Ed. 46 (2007) 4630-4660.

    13. [13]

      [13] H.F. Liu, S.F. Ji, H. Yang, H. Zhang, M. Tang, Ultrasonic-assisted ultra-rapid synthesis of monodisperse meso-SiO2@Fe3O4 microspheres with enhanced mesoporous structure, Ultrason. Sonochem. 21 (2014) 505-512.

    14. [14]

      [14] H. Zhang, D.L. Liu, L.L. Zeng, M. Li, β-Cyclodextrin assisted one-pot synthesis of mesoporous magnetic Fe3O4@C and their excellent performance for the removal of Cr (VI) from aqueous solutions, Chin. Chem. Lett. 24 (2013) 341-343.

    15. [15]

      [15] Y. Li, T.H. Leng, H.Q. Lin, et al., Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry, J. Proteome Res. 6 (2007) 4498-4510.

    16. [16]

      [16] J. Jin, F. Yang, F.W. Zhang, et al., 2,2-(Phenylazanediyl) diacetic acid modified Fe3O4@PEI for selective removal of cadmium ions from blood, Nanoscale 4 (2012) 733-737.

    17. [17]

      [17] X.X. Yang, E. Larry, L.E. Erickson, K.L. Hohn, Sol-gel Cu-Al2O3 adsorbents for selective adsorption of thiophene out of hydrocarbon, Ind. Eng. Chem. Res. 45 (2006) 6169-6174.

    18. [18]

      [18] S.A. Sadaphal, A.H. Kategaonkar, V.B. Labade, M.S. Shingare, Synthesis of bis (indolyl) methanes using aluminium oxide (acidic) in dry media, Chin. Chem. Lett. 21 (2010) 39-42.

    19. [19]

      [19] H. Tajizadegan, M. Rashidzadeh, M. Jafari, R.E. Kahrizsangi, Novel ZnO-Al2O3 composite particles as sorbent for low temperature H2S removal, Chin. Chem. Lett. 24 (2013) 167-169.

    20. [20]

      [20] J. Huang, Y. Wang, J.M. Zheng, W.L. Dai, K.N. Fan, Influence of support surface basicity and gold particle size on catalytic activity of Au/γ-AlOOH and Au/γ-Al2O3 catalyst in aerobic oxidation α, ω-diols to lactones, Appl. Catal. B: Environ. 103 (2011) 343-350.

    21. [21]

      [21] M.I. Cobo, J.A. Conesa, C.M. Correa, The effect of NaOH on the liquid-phase hydrodechlorination of dioxins over Pd/γ-Al2O3, J. Phys. Chem. A 112 (2008) 8715-8722.

    22. [22]

      [22] B.B. Chen, X.B. Zhu, M. Croker, Y. Wang, C. Shi, Complete oxidation of formaldehyde at ambient temperature over γ-Al2O3 supported Au catalyst, Catal. Commun. 42 (2013) 93-97.

    23. [23]

      [23] X. Li, C.H. Xu, C.Q. Liu, Y. Chen, J.Y. Liu, Synthesis of pyrazinyl compounds from glycerol and 1,2-propanediamine over Cu-TiO2 catalysts supported on γ-Al2O3, Chin. Chem. Lett. 24 (2013) 751-754.

    24. [24]

      [24] H.F. Liu, S.F. Ji, Y.Y. Zheng, M. Li, H. Yang, Modified solvothermal synthesis of magnetic microspheres with multifunctional surfactant cetyltrimethyl ammonium bromide and directly coated mesoporous shell, Powder Technol. 246 (2013) 520-529.

    25. [25]

      [25] Y.Y. Zheng, S.F. Ji, H.F. Liu, M. Li, H. Yang, Synthesis of mesoporous γ-AlOOH@-Fe3O4 magnetic nanomicrospheres, Particuology 10 (2012) 751-758.

    26. [26]

      [26] W. Li, B.L. Zhang, X.J. Li, H.P. Zhang, Q.Y. Zhang, Preparation and characterization of novel immobilized Fe3O4@SiO2@mSiO2-Pd(0) catalyst with large pore-size mesoporous for Suzuki coupling reaction, Appl. Catal. A: Gen. 459 (2013) 65-72.

    27. [27]

      [27] G.B. Donna, Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions, Angew. Chem. Int. Ed. 44 (2005) 4302-4320.

    28. [28]

      [28] J. Zhu, J.H. Zhou, T.J. Zhao, et al., Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction, Appl. Catal. A: Gen. 353 (2009) 243-250.

    29. [29]

      [29] C.P. Mehnert, D.W. Weaver, J.Y. Yin, Heterogeneous Heck catalysis with palladium-grafted molecular sieves, J. Am. Chem. Soc. 120 (1998) 12289-12296.

    30. [30]

      [30] F.W. Zhang, J. Jin, X. Zhong, et al., Pd immobilized on amine functionalized magnetite nanoparticles: a novel and highly active catalyst for hydrogenation and Heck reactions, Green Chem. 13 (2011) 1238-1243.

    31. [31]

      [31] J.A. Bennett, I.P. Mikheenko, K. Deplanche, et al., Nanoparticles of palladium supported on bacterial biomass: new re-usable heterogeneous catalyst with comparable activity to homogeneous colloidal Pd in the Heck reaction, Appl. Catal. A: Environ. 140 (2013) 700-707.

    32. [32]

      [32] A. Balanta, C. Godard, C. Claver, Cross coupling reactions in organic synthesis themed issue, Chem. Soc. Rev. 40 (2011) 4973-4985.

    33. [33]

      [33] M.Y. Zhu, G.W. Diao, Magnetically recyclable Pd nanoparticles immobilized on magnetic Fe3O4@C nanocomposites: preparation, characterization, and their catalytic activity toward Suzuki and Heck coupling reactions, J. Phys. Chem. 115 (2011) 24743-24749.

  • 加载中
    1. [1]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    2. [2]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    3. [3]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    4. [4]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    5. [5]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    6. [6]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    7. [7]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    8. [8]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    9. [9]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    10. [10]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    11. [11]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    12. [12]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    13. [13]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    14. [14]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    15. [15]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    16. [16]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    17. [17]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    18. [18]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    19. [19]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    20. [20]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

Metrics
  • PDF Downloads(0)
  • Abstract views(715)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return