Citation: Pei Liu, Xiao-Hai Yang, Qing Wang, Jing Huang, Jian-Bo Liu, Ying Zhu, Lei-Liang He, Ke-Min Wang. Sensitive detection of DNA methyltransferase activity based on rolling circle amplifi cation technology[J]. Chinese Chemical Letters, ;2014, 25(7): 1047-1051. doi: 10.1016/j.cclet.2014.05.002 shu

Sensitive detection of DNA methyltransferase activity based on rolling circle amplifi cation technology

  • Corresponding author: Xiao-Hai Yang,  Ke-Min Wang, 
  • Received Date: 3 March 2014
    Available Online: 14 April 2014

    Fund Project: and International Science & Technology operation Program of China (No. 2010DFB30300). (No. 2011CB911002)

  • This work develops a fluorescence approach for sensitive detection of DNA methyltransferase activity based on endonuclease and rolling circle amplification (RCA) technique. In the presence of DNA adenine methylation (Dam) MTase, the methylation-responsive sequence of hairpin probe is methylated and cleaved by the methylation-sensitive restriction endonuclease Dpn I. The products cleaved by restriction endonuclease Dpn I then function as a signal primer to initiate RCA reaction by hybridizing with the circular DNA template. Each RCA product containing thousands of repeated sequences might hybridize with a large number of molecular beacons (detection probes), resulting in an enhanced fluorescence signal. In the absence of Dam MTase, neithermethylation/cleavage nor RCA reaction can be initiated and no fluorescence signal is observed. The proposed method exhibits a dynamic range from 0.5 U/mL to 30 U/mL and a detection limit of 0.18 U/mL. This method can be used for the screening of antimicrobial drugs and has a great potential to be further applied in early clinical diagnosis.
  • 加载中
    1. [1]

      [1] M.G. Marinus, J. Casadesus, Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more, Fems. Microbiol Rev. 33 (2009) 488-503.

    2. [2]

      [2] S.J. Cokus, S.H. Feng, X.Y. Zhang, et al., Shotgun bisulphite sequencing of the arabidopsis genome reveals DNA methylation patterning, Nature 452 (2008) 215-219.

    3. [3]

      [3] R. Lister, R.C. O'Malley, J. Tonti-Filippini, et al., Highly integrated single-base resolution maps of the epigenome in arabidopsis, Cell 133 (2008) 523-536.

    4. [4]

      [4] C.B. Klein, M. Costa, DNA methylation and gene expression: introduction and overview, Mutat. Res. 386 (1997) 103-105.

    5. [5]

      [5] A. Bird, DNA methylation patterns and epigenetic memory, Gene Dev. 16 (2002) 6-21.

    6. [6]

      [6] A.P. Feinberg, B. Tycko, The history of cancer epigenetics, Nat. Rev. Cancer 4 (2004) 143-153.

    7. [7]

      [7] P.A. Jones, S.B. Baylin, The epigenomics of cancer, Cell 128 (2007) 683-692.

    8. [8]

      [8] F. Lyko, B.H. Ramsahoye, R. Jaenisch, DNA methylation in drosophila melanogaster, Nature 408 (2000) 538-540.

    9. [9]

      [9] I. Hatada, Y. Hayashizaki, S. Hirotsune, et al., A genomic scanning method for higher organisms using restriction sites as landmarks, Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 9523-9527.

    10. [10]

      [10] C. Zhao, K.G. Qu, Y.J. Song, et al., A universal, label-free, and sensitive optical enzyme-sensing system for nuclease and methyltransferase activity based on light scattering of carbon nanotubes, Adv. Funct. Mater. 21 (2011) 583-590.

    11. [11]

      [11] T. Liu, J. Zhao, D.M. Zhang, G.X. Li, Novel method to detect DNA methylation using gold nanoparticles coupled with enzyme-linkage reactions, Anal. Chem. 82 (2010) 229-233.

    12. [12]

      [12] W. Li, Z.L. Liu, H. Lin, et al., Label-free colorimetric assay for methyltransferase activity based on a novel methylation-responsive DNAzyme strategy, Anal. Chem. 82 (2010) 1935-1941.

    13. [13]

      [13] G.T. Song, C.E. Chen, J.S. Ren, et al., A simple, universal colorimetric assay for endonuclease/methyltransferase activity and inhibition based on an enzymeresponsive nanoparticle system, ACS Nano 3 (2009) 1183-1189.

    14. [14]

      [14] M.F. Fraga, R. Rodríguez, M.J. Cañal, Rapid quantification of DNA methylation by high performance capillary electrophoresis, Electrophoresis 21 (2000) 2990-2994.

    15. [15]

      [15] S. Friso, S.W. Choi, G.G. Dolnikowski, et al., A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry, Anal. Chem. 74 (2002) 4526-4531.

    16. [16]

      [16] J. Li, H.F. Yan, K.M. Wang, W.H. Tan, X.W. Zhou, Hairpin fluorescence DNA probe for real-time monitoring of DNA methylation, Anal. Chem. 79 (2007) 1050-1056.

    17. [17]

      [17] X.L. Wang, Y.L. Song, M.Y. Song, et al., Fluorescence polarization combined capillary electrophoresis immunoassay for the sensitive detection of genomic DNA methylation, Anal. Chem. 81 (2009) 7885-7891.

    18. [18]

      [18] R.J. Wood, J.C. McKelvie, M.D. Maynard-Smith, P.L. Roach, A real-time assay for CpG-specific cytosine-C5 methyltransferase activity, Nucleic Acids Res. 38 (2010) e107.

    19. [19]

      [19] F.D. Feng, H.Z. Wang, L.L. Han, S. Wang, Fluorescent conjugated polyelectrolyte as an indicator for convenient detection of DNA methylation, J. Am. Chem. Soc. 130 (2008) 11338-11343.

    20. [20]

      [20] P. Wang, Z.B. Mai, Z. Dai, X.Y. Zou, Investigation of DNA methylation by direct electrocatalytic oxidation, Chem. Commun. 46 (2010) 7781-7783.

    21. [21]

      [21] X.X. He, J. Su, Y.H. Wang, et al., A sensitive signal-on electrochemical assay for MTase activity using AuNPs amplification, Biosens. Bioelectron. 28 (2011) 298-303.

    22. [22]

      [22] Y.P. Zeng, J. Hu, Y. Long, C.Y. Zhang, Sensitive detection of DNA methyltransferase using hairpin probe-based primer generation rolling circle amplification-induced chemiluminescence, Anal. Chem. 85 (2013) 6143-6150.

    23. [23]

      [23] J. Nosek, A. Rycovska, A.M. Makhov, J.D. Griffith, L. Tomaska, Amplification of telomeric arrays via rolling-circle mechanism, J. Biol. Chem. 280 (2005) 10840-10845.

    24. [24]

      [24] H.Q. Wang, W.Y. Liu, Z. Wu, et al., Homogeneous label-free genotyping of single nucleotide polymorphism using ligation-mediated strand displacement amplification with DNAzyme-based chemiluminescence detection, Anal. Chem. 83 (2011) 1883-1889.

    25. [25]

      [25] X. Hun, H. Chen, W. Wang, Design of ultrasensitive chemiluminescence detection of lysozyme in cancer cells based on nicking endonuclease signal amplification technology, Biosens. Bioelectron. 26 (2010) 248-254.

    26. [26]

      [26] C.F. Zhu, Y.Q. Wen, H.Z. Peng, et al., A methylation-stimulated DNA machine: an autonomous isothermal route to methyltransferase activity and inhibition analysis, Anal. Bioanal. Chem. 399 (2011) 3459-3464.

    27. [27]

      [27] F. Chen, Y. Zhao, Methylation-blocked enzymatic recycling amplification for highly sensitive fluorescence sensing of DNA methyltransferase activity, Analyst 138 (2013) 284-289.

    28. [28]

      [28] F. Andrew, S.Q. Xu, Rolling replication of short DNA circles, Proc. Natl. Acad. Sci. U.S.A. 92 (1995) 4641-4645.

    29. [29]

      [29] M.L. Li, D.R. Zhou, H. Zhao, J.K. Wang, Z.H. Lu, Endonuclease-rolling circle amplification-based method for sensitive analysis of DNA-binding protein, Chin. Chem. Lett. 20 (2009) 1315-1318.

  • 加载中
    1. [1]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    2. [2]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    3. [3]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    4. [4]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    5. [5]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    6. [6]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    7. [7]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    8. [8]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    9. [9]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    10. [10]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    11. [11]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    12. [12]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    13. [13]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    14. [14]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    15. [15]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    16. [16]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    17. [17]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    18. [18]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    19. [19]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    20. [20]

      Zhichao ZhouFuqian ChenXiaotong XiaDong YeRong ZhouLei LiTao DengZhenhua DingFang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970

Metrics
  • PDF Downloads(0)
  • Abstract views(597)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return