Citation:
Pei Liu, Xiao-Hai Yang, Qing Wang, Jing Huang, Jian-Bo Liu, Ying Zhu, Lei-Liang He, Ke-Min Wang. Sensitive detection of DNA methyltransferase activity based on rolling circle amplifi cation technology[J]. Chinese Chemical Letters,
;2014, 25(7): 1047-1051.
doi:
10.1016/j.cclet.2014.05.002
-
This work develops a fluorescence approach for sensitive detection of DNA methyltransferase activity based on endonuclease and rolling circle amplification (RCA) technique. In the presence of DNA adenine methylation (Dam) MTase, the methylation-responsive sequence of hairpin probe is methylated and cleaved by the methylation-sensitive restriction endonuclease Dpn I. The products cleaved by restriction endonuclease Dpn I then function as a signal primer to initiate RCA reaction by hybridizing with the circular DNA template. Each RCA product containing thousands of repeated sequences might hybridize with a large number of molecular beacons (detection probes), resulting in an enhanced fluorescence signal. In the absence of Dam MTase, neithermethylation/cleavage nor RCA reaction can be initiated and no fluorescence signal is observed. The proposed method exhibits a dynamic range from 0.5 U/mL to 30 U/mL and a detection limit of 0.18 U/mL. This method can be used for the screening of antimicrobial drugs and has a great potential to be further applied in early clinical diagnosis.
-
Keywords:
- Methyltransferase,
- RCA,
- Dam Mtase,
- Dpn I,
- Fluorescence
-
-
-
[1]
[1] M.G. Marinus, J. Casadesus, Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more, Fems. Microbiol Rev. 33 (2009) 488-503.
-
[2]
[2] S.J. Cokus, S.H. Feng, X.Y. Zhang, et al., Shotgun bisulphite sequencing of the arabidopsis genome reveals DNA methylation patterning, Nature 452 (2008) 215-219.
-
[3]
[3] R. Lister, R.C. O'Malley, J. Tonti-Filippini, et al., Highly integrated single-base resolution maps of the epigenome in arabidopsis, Cell 133 (2008) 523-536.
-
[4]
[4] C.B. Klein, M. Costa, DNA methylation and gene expression: introduction and overview, Mutat. Res. 386 (1997) 103-105.
-
[5]
[5] A. Bird, DNA methylation patterns and epigenetic memory, Gene Dev. 16 (2002) 6-21.
-
[6]
[6] A.P. Feinberg, B. Tycko, The history of cancer epigenetics, Nat. Rev. Cancer 4 (2004) 143-153.
-
[7]
[7] P.A. Jones, S.B. Baylin, The epigenomics of cancer, Cell 128 (2007) 683-692.
-
[8]
[8] F. Lyko, B.H. Ramsahoye, R. Jaenisch, DNA methylation in drosophila melanogaster, Nature 408 (2000) 538-540.
-
[9]
[9] I. Hatada, Y. Hayashizaki, S. Hirotsune, et al., A genomic scanning method for higher organisms using restriction sites as landmarks, Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 9523-9527.
-
[10]
[10] C. Zhao, K.G. Qu, Y.J. Song, et al., A universal, label-free, and sensitive optical enzyme-sensing system for nuclease and methyltransferase activity based on light scattering of carbon nanotubes, Adv. Funct. Mater. 21 (2011) 583-590.
-
[11]
[11] T. Liu, J. Zhao, D.M. Zhang, G.X. Li, Novel method to detect DNA methylation using gold nanoparticles coupled with enzyme-linkage reactions, Anal. Chem. 82 (2010) 229-233.
-
[12]
[12] W. Li, Z.L. Liu, H. Lin, et al., Label-free colorimetric assay for methyltransferase activity based on a novel methylation-responsive DNAzyme strategy, Anal. Chem. 82 (2010) 1935-1941.
-
[13]
[13] G.T. Song, C.E. Chen, J.S. Ren, et al., A simple, universal colorimetric assay for endonuclease/methyltransferase activity and inhibition based on an enzymeresponsive nanoparticle system, ACS Nano 3 (2009) 1183-1189.
-
[14]
[14] M.F. Fraga, R. Rodríguez, M.J. Cañal, Rapid quantification of DNA methylation by high performance capillary electrophoresis, Electrophoresis 21 (2000) 2990-2994.
-
[15]
[15] S. Friso, S.W. Choi, G.G. Dolnikowski, et al., A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry, Anal. Chem. 74 (2002) 4526-4531.
-
[16]
[16] J. Li, H.F. Yan, K.M. Wang, W.H. Tan, X.W. Zhou, Hairpin fluorescence DNA probe for real-time monitoring of DNA methylation, Anal. Chem. 79 (2007) 1050-1056.
-
[17]
[17] X.L. Wang, Y.L. Song, M.Y. Song, et al., Fluorescence polarization combined capillary electrophoresis immunoassay for the sensitive detection of genomic DNA methylation, Anal. Chem. 81 (2009) 7885-7891.
-
[18]
[18] R.J. Wood, J.C. McKelvie, M.D. Maynard-Smith, P.L. Roach, A real-time assay for CpG-specific cytosine-C5 methyltransferase activity, Nucleic Acids Res. 38 (2010) e107.
-
[19]
[19] F.D. Feng, H.Z. Wang, L.L. Han, S. Wang, Fluorescent conjugated polyelectrolyte as an indicator for convenient detection of DNA methylation, J. Am. Chem. Soc. 130 (2008) 11338-11343.
-
[20]
[20] P. Wang, Z.B. Mai, Z. Dai, X.Y. Zou, Investigation of DNA methylation by direct electrocatalytic oxidation, Chem. Commun. 46 (2010) 7781-7783.
-
[21]
[21] X.X. He, J. Su, Y.H. Wang, et al., A sensitive signal-on electrochemical assay for MTase activity using AuNPs amplification, Biosens. Bioelectron. 28 (2011) 298-303.
-
[22]
[22] Y.P. Zeng, J. Hu, Y. Long, C.Y. Zhang, Sensitive detection of DNA methyltransferase using hairpin probe-based primer generation rolling circle amplification-induced chemiluminescence, Anal. Chem. 85 (2013) 6143-6150.
-
[23]
[23] J. Nosek, A. Rycovska, A.M. Makhov, J.D. Griffith, L. Tomaska, Amplification of telomeric arrays via rolling-circle mechanism, J. Biol. Chem. 280 (2005) 10840-10845.
-
[24]
[24] H.Q. Wang, W.Y. Liu, Z. Wu, et al., Homogeneous label-free genotyping of single nucleotide polymorphism using ligation-mediated strand displacement amplification with DNAzyme-based chemiluminescence detection, Anal. Chem. 83 (2011) 1883-1889.
-
[25]
[25] X. Hun, H. Chen, W. Wang, Design of ultrasensitive chemiluminescence detection of lysozyme in cancer cells based on nicking endonuclease signal amplification technology, Biosens. Bioelectron. 26 (2010) 248-254.
-
[26]
[26] C.F. Zhu, Y.Q. Wen, H.Z. Peng, et al., A methylation-stimulated DNA machine: an autonomous isothermal route to methyltransferase activity and inhibition analysis, Anal. Bioanal. Chem. 399 (2011) 3459-3464.
-
[27]
[27] F. Chen, Y. Zhao, Methylation-blocked enzymatic recycling amplification for highly sensitive fluorescence sensing of DNA methyltransferase activity, Analyst 138 (2013) 284-289.
-
[28]
[28] F. Andrew, S.Q. Xu, Rolling replication of short DNA circles, Proc. Natl. Acad. Sci. U.S.A. 92 (1995) 4641-4645.
-
[29]
[29] M.L. Li, D.R. Zhou, H. Zhao, J.K. Wang, Z.H. Lu, Endonuclease-rolling circle amplification-based method for sensitive analysis of DNA-binding protein, Chin. Chem. Lett. 20 (2009) 1315-1318.
-
[1]
-
-
-
[1]
Ying Xu , Chengying Shen , Hailong Yuan , Wei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324
-
[2]
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
-
[3]
Manman Ou , Yunjian Zhu , Jiahao Liu , Zhaoxuan Liu , Jianjun Wang , Jun Sun , Chuanxiang Qin , Lixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510
-
[4]
Junqing Wu , Yiyang Zhang , Qingqing Hong , Hui Yang , Lifeng Zhang , Ming Zhang , Lei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165
-
[5]
Kuan Deng , Fei Yang , Zhi-Qi Cheng , Bi-Wen Ren , Hua Liu , Jiao Chen , Meng-Yao She , Le Yu , Xiao-Gang Liu , Hai-Tao Feng , Jian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464
-
[6]
Mengfan Zhang , Lingyan Liu , Peng Wei , Wei Feng , Tao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127
-
[7]
Ying Wang , Hong Yang , Caixia Zhu , Qing Hong , Xuwen Cao , Kaiyuan Wang , Yuan Xu , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153
-
[8]
Ya-Wen Zhang , Ming-Ming Gan , Li-Ying Sun , Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356
-
[9]
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
-
[10]
Qin Li , Kexin Yang , Qinglin Yang , Xiangjin Zhu , Xiaole Han , Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059
-
[11]
Zehua Zhang , Haitao Yu , Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042
-
[12]
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
-
[13]
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
-
[14]
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
-
[15]
Ziyou Zhang , Te Ji , Hongliang Dong , Zhiqiang Chen , Zhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542
-
[16]
Shuwen SUN , Gaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368
-
[17]
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
-
[18]
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
-
[19]
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
-
[20]
Zhichao Zhou , Fuqian Chen , Xiaotong Xia , Dong Ye , Rong Zhou , Lei Li , Tao Deng , Zhenhua Ding , Fang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(597)
- HTML views(0)