Citation: Yin-Xia Sun, Wei-Yin Sun. Influence of temperature on metal-organic frameworks[J]. Chinese Chemical Letters, ;2014, 25(6): 823-828. doi: 10.1016/j.cclet.2014.04.032 shu

Influence of temperature on metal-organic frameworks

  • Corresponding author: Wei-Yin Sun, 
  • Received Date: 18 March 2014
    Available Online: 14 April 2014

    Fund Project:

  • Reaction temperature is one of the key parameters in the synthesis ofmetal-organic frameworks (MOFs). Though there is no convergence with regard to the various experimental parameters, reaction temperature has been found to have remarkable influence on the formation and structure of MOFs, especially toward the control of topology and dimensionality of the MOF structures. Theoretically, the reaction temperature affects directly the reaction energy barrier in reaction thermodynamics and the reaction rate in the reaction kinetics. This review aims to show the influence of reaction temperature on crystal growth/assembly, structural modulation and transformation of MOFs, and to provide primary information and insights into the design and assembly of desired MOFs.
  • 加载中
    1. [1]

      [1] S.L. James, Metal-organic frameworks, Chem. Soc. Rev. 32 (2003) 276-288.

    2. [2]

      [2] (a) D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O'Keeffe, O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1257-1283;(b) M.J. Prakash, M.S. Lah, Metal-organic macrocycles, metal-organic polyhedral and metal-organic frameworks, Chem. Commun. (2009) 3326-3341.

    3. [3]

      [3] (a) G. Férey, Hybrid porous solids: past, present, future, Chem. Soc. Rev. 37 (2008) 191-214;(b) O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, et al., Reticular synthesis and the design of new materials, Nature 423 (2003) 705-714.

    4. [4]

      [4] (a) R. Banerjee, A. Phan, B. Wang, et al., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture, Science 319 (2008) 939-943;(b) X. Lin, A.J. Blake, C. Wilson, et al., A porous framework polymer based on a zinc(II) 4,40-bipyridine-2,6,20,60-tetracarboxylate: synthesis, structure, and "zeolite-like" behaviors, J. Am. Chem. Soc. 128 (2006) 10745-10753;(c) Z. Su, M. Chen, T.A. Okamura, et al., Reversible single-crystal-to-single-crystal transformation and highly selective adsorption property of three-dimensional cobalt (II) frameworks, Inorg. Chem. 50 (2011) 985-991;(d) S.S. Chen, M. Chen, S. Takamizawa, et al., Porous cobalt(II)-imidazolate supramolecular isomeric frameworks with selective gas sorption property, Chem. Commun. 47 (2011) 4902-4904.

    5. [5]

      [5] (a) G.J. Halder, C.J. Kepert, B. Moubaraki, K.S. Murray, J.D. Cashion, Guest-dependent spin crossover in a nanoporous molecular framework material, Science 298 (2002) 1762-1765;(b) Z. Su, J. Fan, T.A. Okamura, W.Y. Sun, N. Ueyama, Ligand-directed and pHcontrolled assembly of chiral 3d-3d heterometallic metal-organic frameworks, Cryst. Growth Des. 10 (2010) 3515-3521;(c) Z. Su, J. Xu, J. Fan, et al., Synthesis, crystal structure, and photoluminescence of coordination polymers with mixed ligands and diverse topologies, Cryst. Growth Des. 9 (2009) 2801-2811.

    6. [6]

      [6] (a) Y. Zhao, K. Chen, Y. Lu, et al., Structural modulation of silver complexes and their distinctive catalytic properties, Dalton Trans. 43 (2014) 2252-2258;(b) G.C. Lü, Y. Zhao, S.S. Chen, Z. Su, W.Y. Sun, J. Fan, Two-dimensional Mn(II) and Cd(II) networks with tetrazole-containing ligand and their properties, Inorg. Chem. Commun. 36 (2013) 59-62;(c) C. Hou, Q. Liu, P. Wang, W.Y. Sun, Porous metal-organic frameworks with high stability and selective sorption for CO2 over N2, Microporous Mesoporous Mater. 172 (2013) 61-66.

    7. [7]

      [7] (a) Y. Zhao, M.F. Lü, J. Fan, et al., Syntheses, structures and photoluminescence properties of cadmium(II) and zinc(II) complexes with pyridinylcarboxamidecontaining ligand, Inorg. Chim. Acta 377 (2011) 138-143;(b) Y.Y. Liu, Y.Y. Jiang, J. Yang, Y.Y. Liu, J.F. Ma, Syntheses, structures and photoluminescence of zinc(II) and silver(I) coordination polymers based on 1,10-(1,4-butanediyl)bis(2-methylbenzimidazole) and different carboxylate ligands, CrystEngComm 13 (2011) 6118-6129;(c) Z. Su, K. Cai, J. Fan, et al., Cadmium(II) complexes with 3,5-di(1H-imidazol-1-yl)benzoate: topological and structural diversity tuned by counteranions, CrystEngComm 12 (2009) 100-108.

    8. [8]

      [8] (a) C.P. Li, M. Du, Role of solvents in coordination supramolecular systems, Chem. Commun. 47 (2011) 5958-5972;(b) L.S. Long, pH effect on the assembly of metal-organic architectures, CrystEngComm 12 (2010) 1354-1365;(c) L. Luo, G.C. Lü, P. Wang, et al., pH-dependent cobalt(II) frameworks with mixed 3,30,5,50-tetra(1H-imidazol-1-yl)-1,10-biphenyl and 1,3,5-benzenetricarboxylate ligands: synthesis, structure and sorption property, CrystEngComm 15 (2013) 9537-9543;(d) D.F. Sun, S.Q. Ma, J.M. Simmons, et al., An unusual case of symmetry-preserving isomerism, Chem. Commun. 46 (2010) 1329-1331.

    9. [9]

      [9] (a) V. Iancu, A. Deshpande, S.W. Hia, Manipulating Kondo temperature via single molecule switching, Nano Lett. 6 (2006) 820-823;(b) F. Luo, M.B. Luo, Y.H. Liu, Temperature-controlled structure diversity observed in the Zn(II)-oxalate-4,40-bipyridine three-member system, CrystEngComm 12 (2010) 1750-1753;(c) G.C. Xu, Y.J. Ding, T.A. Okamura, et al., Structure diversity and reversible anion exchange properties of cadmium(II) complexes with 1,3,5-tris(imidazol-1-ylmethyl)benzene: counteranion-directed flexible ligand conformational variation, CrystEngComm 10 (2008) 1052-1062.

    10. [10]

      [10] (a) D. Liu, Z.G. Ren, H.X. Li, et al., pH-dependent solvothermal formation of two different 3D multiple interpenetrating nets from the same components of Zn(NO3)2, 1,3-benzenedicarboxylate and 1,4-bis[2-(4-pyridyl)ethenyl]benzene, CrystEngComm 12 (2010) 1912-1919;(b) S.S. Chen, Z.S. Bai, J. Fan, et al., Synthesis and characterization of metal complexes with a mixed 4-imidazole-containing ligand and a variety of multicarboxylic acids, CrystEngComm 12 (2010) 3091-3104.

    11. [11]

      [11] G.P. Yang, L. Hou, L.F. Ma, Y.Y. Wang, Investigation on the prime factors influencing the formation of entangled metal-organic frameworks, CrystEngComm 15 (2013) 2561-2578.

    12. [12]

      [12] (a) M. Chen, M.S. Chen, T.A. Okamura, et al., A series of silver(I)-lanthanide(III) heterometallic coordination polymers: syntheses, structures and photoluminescent properties, CrystEngComm 13 (2011) 3801-3810;(b) C.A. Bauer, T.V. Timofeeva, T.B. Settersten, et al., Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks, J. Am. Chem. Soc. 129 (2007) 7136-7144;(c) P. Mahata, A. Sundaresanb, S. Natarajan, The role of temperature on the structure and dimensionality of MOFs: an illustrative study of the formation of manganese oxy-bis(benzoate) structures, Chem. Commun. (2007) 4471-4473.

    13. [13]

      [13] (a) S. Bauer, C. Serre, T. Devic, et al., High-throughput assisted rationalization of the formation of metal organic frameworks in the iron(III) aminoterephthalate solvothermal system, Inorg. Chem. 47 (2008) 7568-7576;(b) L.F. Ma, L.Y. Wang, D.H. Lu, S.R. Batten, J.G. Wang, Structural variation from 1D to 3D: effects of temperature and pH value on the construction of Co(II)-H2tbip/bpp mixed ligands system, Cryst. Growth Des. 9 (2009) 1741-1749;(c) E.C. Yang, T.Y. Liu, Q. Wang, X.J. Zhao, Temperature-controlled assembly of two fluorescent ZnII polymers from 3D pillared-layer framework to 2D (4,4) layer, Inorg. Chem. Commun. 14 (2011) 285-287.

    14. [14]

      [14] P.M. Forster, A.R. Burbank, C. Livage, G. Férey, A.K. Cheetham, The role of temperature in the synthesis of hybrid inorganic-organic materials: the example of cobalt succinates, Chem. Commun. (2004) 368-369.

    15. [15]

      [15] M. Dan, C.N.R. Rao, A building-up process in open-framework metal carboxylates that involves a progressive increase in dimensionality, Angew. Chem. Int. Ed. 45 (2006) 281-285.

    16. [16]

      [16] (a) P.J. Calderone, D. Banerjee, A.M. Plonka, S.J. Kim, J.B. Parise, Temperature dependent structure formation and photoluminescence studies of a series of magnesiuμ-based coordination networks, Inorg. Chim. Acta 394 (2013) 452-458;(b) P. Wang, L. Luo, J. Fan, et al., Syntheses, structures, sorption and magnetic properties of copper (II) frameworks with varied topologies, Microporous Mesoporous. Mater. 175 (2013) 116-124;(c) L. Luo, K. Chen, Q. Liu, et al., Zinc(II) and cadmium(II) complexes with 1,3,5-benzenetricarboxylate and imidazole-containing ligands: structural variation via reaction temperature and solvent, Cryst. Growth Des. 13 (2013) 2312-2321.

    17. [17]

      [17] Z. Su, J. Fan, T. Okamura, et al., Interpenetrating and self-penetrating zinc(II) complexes with rigid tripodal imidazole-containing ligand and benzenedicarboxylate, Cryst. Growth Des. 10 (2010) 1911-1922.

    18. [18]

      [18] (a) H. Chun, D.N. Dybtsev, H. Kim, K. Kim, K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials, Chem. Eur. J. 11 (2005) 3521-3529;(b) B.Q. Ma, K.L. Mulfort, J.T. Hupp, Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions, Inorg. Chem. 44 (2005) 4912-4914;(c) X.L. Wang, C. Qin, E.B. Wang, et al., An unprecedented eight-connected selfpenetrating network based on pentanuclear zinc cluster building blocks, Chem. Commun. (2005) 4789-4791.

    19. [19]

      [19] H.L. Jiang, Y. Tatsu, Z.H. Lu, Q. Xu, Non-, micro-, and mesoporous metal-organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation, J. Am. Chem. Soc. 132 (2010) 5586-5587.

    20. [20]

      [20] (a) C. Livage, C. Egger, G. Férey, Hydrothermal versus nonhydrothermal synthesis for the preparation of organic-inorganic solids: the example of cobalt(II) succinate, Chem. Mater. 13 (2001) 410-414;(b) Z.S. Bai, Z.P. Qi, Y. Lu, Q. Yuan, W.Y. Sun, Novel inorganic-organic hybrid frameworks of manganese(II): syntheses, crystal structures, and physical properties, Cryst. Growth Des. 8 (2008) 1924-1931.

    21. [21]

      [21] (a) J.K. Sun, W. Li, L.X. Cai, J. Zhang, Structural diversity of the mixed-ligand system Mn-cpdba-2,20-bpy controlled by temperature, CrystEngComm 13 (2011) 1550-1556;(b) T.L. Hu, Y. Tao, Z. Chang, X.H. Bu, Zinc(II) complexes with a versatile multitopic tetrazolate-based ligand showing various structures: impact of reaction conditions on the final product structures, Inorg. Chem. 50 (2011) 10994-11003;(c) S.M. Zhang, T.L. Hu, J.L. Du, X.H. Bu, Tuning the formation of copper(I) coordination architectures with quinoxaline-based N,S-donor ligands by varying terminal groups of ligands and reaction temperature, Inorg. Chim. Acta 362 (2009) 3915-3924.

    22. [22]

      [22] (a) G.X. Liu, H. Xu, H. Zhou, S. Nishiharab, X.M. Ren, Temperature-induced assembly of MOF polymorphs: syntheses, structures and physical properties, CrystEngComm 14 (2012) 1856-1864.

    23. [23]

      [23] L.L. Liu, L. Liu, J.J. Wang, Solvent-and temperature-driven synthesis of three Cd(II) coordination polymers based on 3,3'-azodibenzoic acid ligand: crystal structures and luminescent properties, Inorg. Chim. Acta 397 (2013) 75-82.

    24. [24]

      [24] G.F. Hou, L.H. Bi, B. Li, L.X. Wu, Reaction controlled assemblies of polyoxotungstates(-molybdates) and coordination polymers, Inorg. Chem. 49 (2010) 6474-6483.

    25. [25]

      [25] (a) J.P. Ma, Y.B. Dong, R.Q. Huang, M.D. Smith, C.Y. Su, Spontaneously resolved chiral three-fold interpenetrating diamondoidlike Cu(II) coordination polymers with temperature-driven crystal-to-crystal transformation, Inorg. Chem. 44 (2005) 6143-6145;(b) L.Z. Zhang, W. Gu, Z.L. Dong, X. Liu, B. Li, Phase transformation of a rare-earth Anderson polyoxometalate at low temperature, CrystEngComm 10 (2008) 1318-1320.

    26. [26]

      [26] (a) J.J. Vittal, Supramolecular structural transformations involving coordination polymers in the solid state, Coord. Chem. Rev. 251 (2007) 1781-1795;(b) X.N. Cheng, W.X. Zhang, X.M. Chen, Single crystal-to-single crystal transformation from ferromagnetic discrete molecules to a spin-canting antiferromagnetic layer, J. Am. Chem. Soc. 129 (2007) 15738-15739;(c) M. Nagarathinam, J.J. Vittal, Anisotropic movements of coordination polymers upon desolvation: solid-state transformation of a linear 1D coordination polymer to a ladderlike structure, Angew. Chem. Int. Ed. 45 (2006) 4337-4341.

    27. [27]

      [27] (a) J.P. Zhang, Y.Y. Lin, W.X. Zhang, X.M. Chen, Temperature-or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer, J. Am. Chem. Soc. 127 (2005) 14162-14163;(b) L. Pan, H. Liu, X. Lei, et al., RPM-1: a recyclable nanoporous material suitable for ship-in-bottle synthesis and large hydrocarbon sorption, Angew. Chem. Int. Ed. 42 (2003) 542-546;(c) M.P. Suh, H.R. Moon, E.Y. Lee, S.Y. Jang, A redox-active two-dimensional coordination polymer: preparation of silver and gold nanoparticles and crystal dynamics on guest removal, J. Am. Chem. Soc. 128 (2006) 4710-4718.

    28. [28]

      [28] J. Li, P. Huang, X.R. Wu, et al., Metal-organic frameworks displaying single crystalto-single crystal transformation through postsynthetic uptake of metal clusters, Chem. Sci. 4 (2013) 3232-3238.

    29. [29]

      [29] (a) P.S. Mukherjee, N. Lopez, A.M. Arif, F. Cervantes-Lee, J.C. Noveron, Singlecrystal to single-crystal phase transitions of bis(N-phenylisonicotinamide)silver( I) nitrate reveal cooperativity properties in porous molecular materials, Chem. Commun. 14 (2007) 1433-1435;(b) M.H. Mir, J.J. Vittal, Single-crystal to single-crystal transformation of cyclic water heptamer to another (H2O)7 cluster containing cyclic pentamer, Cryst. Growth Des. 8 (2008) 1478-1480.

    30. [30]

      [30] H. Konaka, L.P. Wu, M. Munakata, et al., Syntheses and structures of photochromic silver(I) coordination polymers with cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene, Inorg. Chem. 42 (2003) 1928-1934.

    31. [31]

      [31] (a) D.K. Kumar, D.A. Jose, A. Das, P. Dastidar, From diamondoid network to (4,4) net: effect of ligand topology on the supramolecular structural diversity, Inorg. Chem. 44 (2005) 6933-6935;(b) S. Yahyaoui, W. Rekik, H. Naili, T. Mhiri, T. Bataille, Synthesis, crystal structures, phase transition characterization and thermal decomposition of a new dabcodiium hexaaquairon(II) bis(sulfate): (C6H14N2)[Fe(H2O)6](SO4)2, J. Solid State Chem. 180 (2007) 3560-3570;(c) G. Mahmoudi, A. Morsali, Crystal-to-crystal transformation from a weak hydrogen-bonded two-dimensional network structure to a two-dimensional coordination polymer on heating, Cryst. Growth Des. 8 (2008) 391-394;(d) N.L. Toh, M. Nagarathinam, J.J. Vittal, Topochemical photodimerization in the coordination polymer [{(CF3CO2)(μ-O2CCH3)Zn}2(μ-bpe)2]n through singlecrystal to single-crystal transformation, Angew. Chem. Ent. Ed. 44 (2005) 2237-2241.

    32. [32]

      [32] (a) C.D. Wu, W.B. Lin, Highly porous, homochiral metal-organic frameworks: solvent-exchange-induced single-crystal to single-crystal transformations, Angew. Chem. Int. Ed. 44 (2005) 1958-1961;(b) T.K. Maji, G. Mostafa, R. Matsuda, S. Kitagawa, Guest-induced asymmetry in a metal-organic porous solid with reversible single-crystal-to-single-crystal structural transformation, J. Am. Chem. Soc. 127 (2005) 17152-17153;(c) J. Sun, F.N. Dai, W.B. Yuan, et al., Dimerization of a metal complex through thermally induced single-crystal-to-single-crystal transformation or mechanochemical reaction, Angew. Chem. Int. Ed. 50 (2011) 7061-7064.

    33. [33]

      [33] K.L. Gurunatha, G. Mostafa, D. Ghoshal, T.K. Maji, Single-crystal-to-single-crystal structural transformation in a three-dimensional bimetallic (4f-3d) supramolecular porous framework, Cryst. Growth Des. 10 (2010) 2483-2489.

    34. [34]

      [34] X.F. Wang, Y. Wang, Y.B. Zhang, et al., Layer-by-layer evolution and a hysteretic single-crystal to single-crystal transformation cycle of a flexible pillared-layer open framework, Chem. Commun. 48 (2012) 133-135.

    35. [35]

      [35] (a) S. Kitagawa, K. Uemura, Dynamic porous properties of coordination polymers inspired by hydrogen bonds, Chem. Soc. Rev. 34 (2005) 109-119;(b) D. Bradshaw, J.E. Warren, M.J. Rosseinsky, Reversible concerted ligand substitution at alternating metal sites in an extended solid, Science 315 (2007) 977-980;(c) D.N. Dybtsev, H. Chun, K. Kim, Rigid and flexible: a highly porous metalorganic framework with unusual guest-dependent dynamic behavior, Angew. Chem. Ent. Ed. 43 (2004) 5033-5036.

    36. [36]

      [36] D. Sarma, S. Natarajan, Usefulness of in situ single crystal to single crystal transformation (SCSC) studies in understanding the temperature-dependent dimensionality cross-over and structural reorganization in copper-containing metal-organic frameworks (MOFs), Cryst. Growth Des. 11 (2011) 5415-5423.

    37. [37]

      [37] X.J. Hong, M.F. Wang, H.G. Jin, et al., Single-crystal to single-crystal transformation from a 1-D chain-like structure to a 2-D coordination polymer on heating, CrystEngComm 15 (2013) 5606-5611.

  • 加载中
    1. [1]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    2. [2]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    3. [3]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    4. [4]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    5. [5]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    6. [6]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    7. [7]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    8. [8]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    9. [9]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    10. [10]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    11. [11]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    12. [12]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    15. [15]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    16. [16]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    17. [17]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    18. [18]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    19. [19]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    20. [20]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

Metrics
  • PDF Downloads(0)
  • Abstract views(761)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return