Citation:
Yin-Xia Sun, Wei-Yin Sun. Influence of temperature on metal-organic frameworks[J]. Chinese Chemical Letters,
;2014, 25(6): 823-828.
doi:
10.1016/j.cclet.2014.04.032
-
Reaction temperature is one of the key parameters in the synthesis ofmetal-organic frameworks (MOFs). Though there is no convergence with regard to the various experimental parameters, reaction temperature has been found to have remarkable influence on the formation and structure of MOFs, especially toward the control of topology and dimensionality of the MOF structures. Theoretically, the reaction temperature affects directly the reaction energy barrier in reaction thermodynamics and the reaction rate in the reaction kinetics. This review aims to show the influence of reaction temperature on crystal growth/assembly, structural modulation and transformation of MOFs, and to provide primary information and insights into the design and assembly of desired MOFs.
-
-
-
[1]
[1] S.L. James, Metal-organic frameworks, Chem. Soc. Rev. 32 (2003) 276-288.
-
[2]
[2] (a) D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O'Keeffe, O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1257-1283;(b) M.J. Prakash, M.S. Lah, Metal-organic macrocycles, metal-organic polyhedral and metal-organic frameworks, Chem. Commun. (2009) 3326-3341.
-
[3]
[3] (a) G. Férey, Hybrid porous solids: past, present, future, Chem. Soc. Rev. 37 (2008) 191-214;(b) O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, et al., Reticular synthesis and the design of new materials, Nature 423 (2003) 705-714.
-
[4]
[4] (a) R. Banerjee, A. Phan, B. Wang, et al., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture, Science 319 (2008) 939-943;(b) X. Lin, A.J. Blake, C. Wilson, et al., A porous framework polymer based on a zinc(II) 4,40-bipyridine-2,6,20,60-tetracarboxylate: synthesis, structure, and "zeolite-like" behaviors, J. Am. Chem. Soc. 128 (2006) 10745-10753;(c) Z. Su, M. Chen, T.A. Okamura, et al., Reversible single-crystal-to-single-crystal transformation and highly selective adsorption property of three-dimensional cobalt (II) frameworks, Inorg. Chem. 50 (2011) 985-991;(d) S.S. Chen, M. Chen, S. Takamizawa, et al., Porous cobalt(II)-imidazolate supramolecular isomeric frameworks with selective gas sorption property, Chem. Commun. 47 (2011) 4902-4904.
-
[5]
[5] (a) G.J. Halder, C.J. Kepert, B. Moubaraki, K.S. Murray, J.D. Cashion, Guest-dependent spin crossover in a nanoporous molecular framework material, Science 298 (2002) 1762-1765;(b) Z. Su, J. Fan, T.A. Okamura, W.Y. Sun, N. Ueyama, Ligand-directed and pHcontrolled assembly of chiral 3d-3d heterometallic metal-organic frameworks, Cryst. Growth Des. 10 (2010) 3515-3521;(c) Z. Su, J. Xu, J. Fan, et al., Synthesis, crystal structure, and photoluminescence of coordination polymers with mixed ligands and diverse topologies, Cryst. Growth Des. 9 (2009) 2801-2811.
-
[6]
[6] (a) Y. Zhao, K. Chen, Y. Lu, et al., Structural modulation of silver complexes and their distinctive catalytic properties, Dalton Trans. 43 (2014) 2252-2258;(b) G.C. Lü, Y. Zhao, S.S. Chen, Z. Su, W.Y. Sun, J. Fan, Two-dimensional Mn(II) and Cd(II) networks with tetrazole-containing ligand and their properties, Inorg. Chem. Commun. 36 (2013) 59-62;(c) C. Hou, Q. Liu, P. Wang, W.Y. Sun, Porous metal-organic frameworks with high stability and selective sorption for CO2 over N2, Microporous Mesoporous Mater. 172 (2013) 61-66.
-
[7]
[7] (a) Y. Zhao, M.F. Lü, J. Fan, et al., Syntheses, structures and photoluminescence properties of cadmium(II) and zinc(II) complexes with pyridinylcarboxamidecontaining ligand, Inorg. Chim. Acta 377 (2011) 138-143;(b) Y.Y. Liu, Y.Y. Jiang, J. Yang, Y.Y. Liu, J.F. Ma, Syntheses, structures and photoluminescence of zinc(II) and silver(I) coordination polymers based on 1,10-(1,4-butanediyl)bis(2-methylbenzimidazole) and different carboxylate ligands, CrystEngComm 13 (2011) 6118-6129;(c) Z. Su, K. Cai, J. Fan, et al., Cadmium(II) complexes with 3,5-di(1H-imidazol-1-yl)benzoate: topological and structural diversity tuned by counteranions, CrystEngComm 12 (2009) 100-108.
-
[8]
[8] (a) C.P. Li, M. Du, Role of solvents in coordination supramolecular systems, Chem. Commun. 47 (2011) 5958-5972;(b) L.S. Long, pH effect on the assembly of metal-organic architectures, CrystEngComm 12 (2010) 1354-1365;(c) L. Luo, G.C. Lü, P. Wang, et al., pH-dependent cobalt(II) frameworks with mixed 3,30,5,50-tetra(1H-imidazol-1-yl)-1,10-biphenyl and 1,3,5-benzenetricarboxylate ligands: synthesis, structure and sorption property, CrystEngComm 15 (2013) 9537-9543;(d) D.F. Sun, S.Q. Ma, J.M. Simmons, et al., An unusual case of symmetry-preserving isomerism, Chem. Commun. 46 (2010) 1329-1331.
-
[9]
[9] (a) V. Iancu, A. Deshpande, S.W. Hia, Manipulating Kondo temperature via single molecule switching, Nano Lett. 6 (2006) 820-823;(b) F. Luo, M.B. Luo, Y.H. Liu, Temperature-controlled structure diversity observed in the Zn(II)-oxalate-4,40-bipyridine three-member system, CrystEngComm 12 (2010) 1750-1753;(c) G.C. Xu, Y.J. Ding, T.A. Okamura, et al., Structure diversity and reversible anion exchange properties of cadmium(II) complexes with 1,3,5-tris(imidazol-1-ylmethyl)benzene: counteranion-directed flexible ligand conformational variation, CrystEngComm 10 (2008) 1052-1062.
-
[10]
[10] (a) D. Liu, Z.G. Ren, H.X. Li, et al., pH-dependent solvothermal formation of two different 3D multiple interpenetrating nets from the same components of Zn(NO3)2, 1,3-benzenedicarboxylate and 1,4-bis[2-(4-pyridyl)ethenyl]benzene, CrystEngComm 12 (2010) 1912-1919;(b) S.S. Chen, Z.S. Bai, J. Fan, et al., Synthesis and characterization of metal complexes with a mixed 4-imidazole-containing ligand and a variety of multicarboxylic acids, CrystEngComm 12 (2010) 3091-3104.
-
[11]
[11] G.P. Yang, L. Hou, L.F. Ma, Y.Y. Wang, Investigation on the prime factors influencing the formation of entangled metal-organic frameworks, CrystEngComm 15 (2013) 2561-2578.
-
[12]
[12] (a) M. Chen, M.S. Chen, T.A. Okamura, et al., A series of silver(I)-lanthanide(III) heterometallic coordination polymers: syntheses, structures and photoluminescent properties, CrystEngComm 13 (2011) 3801-3810;(b) C.A. Bauer, T.V. Timofeeva, T.B. Settersten, et al., Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks, J. Am. Chem. Soc. 129 (2007) 7136-7144;(c) P. Mahata, A. Sundaresanb, S. Natarajan, The role of temperature on the structure and dimensionality of MOFs: an illustrative study of the formation of manganese oxy-bis(benzoate) structures, Chem. Commun. (2007) 4471-4473.
-
[13]
[13] (a) S. Bauer, C. Serre, T. Devic, et al., High-throughput assisted rationalization of the formation of metal organic frameworks in the iron(III) aminoterephthalate solvothermal system, Inorg. Chem. 47 (2008) 7568-7576;(b) L.F. Ma, L.Y. Wang, D.H. Lu, S.R. Batten, J.G. Wang, Structural variation from 1D to 3D: effects of temperature and pH value on the construction of Co(II)-H2tbip/bpp mixed ligands system, Cryst. Growth Des. 9 (2009) 1741-1749;(c) E.C. Yang, T.Y. Liu, Q. Wang, X.J. Zhao, Temperature-controlled assembly of two fluorescent ZnII polymers from 3D pillared-layer framework to 2D (4,4) layer, Inorg. Chem. Commun. 14 (2011) 285-287.
-
[14]
[14] P.M. Forster, A.R. Burbank, C. Livage, G. Férey, A.K. Cheetham, The role of temperature in the synthesis of hybrid inorganic-organic materials: the example of cobalt succinates, Chem. Commun. (2004) 368-369.
-
[15]
[15] M. Dan, C.N.R. Rao, A building-up process in open-framework metal carboxylates that involves a progressive increase in dimensionality, Angew. Chem. Int. Ed. 45 (2006) 281-285.
-
[16]
[16] (a) P.J. Calderone, D. Banerjee, A.M. Plonka, S.J. Kim, J.B. Parise, Temperature dependent structure formation and photoluminescence studies of a series of magnesiuμ-based coordination networks, Inorg. Chim. Acta 394 (2013) 452-458;(b) P. Wang, L. Luo, J. Fan, et al., Syntheses, structures, sorption and magnetic properties of copper (II) frameworks with varied topologies, Microporous Mesoporous. Mater. 175 (2013) 116-124;(c) L. Luo, K. Chen, Q. Liu, et al., Zinc(II) and cadmium(II) complexes with 1,3,5-benzenetricarboxylate and imidazole-containing ligands: structural variation via reaction temperature and solvent, Cryst. Growth Des. 13 (2013) 2312-2321.
-
[17]
[17] Z. Su, J. Fan, T. Okamura, et al., Interpenetrating and self-penetrating zinc(II) complexes with rigid tripodal imidazole-containing ligand and benzenedicarboxylate, Cryst. Growth Des. 10 (2010) 1911-1922.
-
[18]
[18] (a) H. Chun, D.N. Dybtsev, H. Kim, K. Kim, K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials, Chem. Eur. J. 11 (2005) 3521-3529;(b) B.Q. Ma, K.L. Mulfort, J.T. Hupp, Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions, Inorg. Chem. 44 (2005) 4912-4914;(c) X.L. Wang, C. Qin, E.B. Wang, et al., An unprecedented eight-connected selfpenetrating network based on pentanuclear zinc cluster building blocks, Chem. Commun. (2005) 4789-4791.
-
[19]
[19] H.L. Jiang, Y. Tatsu, Z.H. Lu, Q. Xu, Non-, micro-, and mesoporous metal-organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation, J. Am. Chem. Soc. 132 (2010) 5586-5587.
-
[20]
[20] (a) C. Livage, C. Egger, G. Férey, Hydrothermal versus nonhydrothermal synthesis for the preparation of organic-inorganic solids: the example of cobalt(II) succinate, Chem. Mater. 13 (2001) 410-414;(b) Z.S. Bai, Z.P. Qi, Y. Lu, Q. Yuan, W.Y. Sun, Novel inorganic-organic hybrid frameworks of manganese(II): syntheses, crystal structures, and physical properties, Cryst. Growth Des. 8 (2008) 1924-1931.
-
[21]
[21] (a) J.K. Sun, W. Li, L.X. Cai, J. Zhang, Structural diversity of the mixed-ligand system Mn-cpdba-2,20-bpy controlled by temperature, CrystEngComm 13 (2011) 1550-1556;(b) T.L. Hu, Y. Tao, Z. Chang, X.H. Bu, Zinc(II) complexes with a versatile multitopic tetrazolate-based ligand showing various structures: impact of reaction conditions on the final product structures, Inorg. Chem. 50 (2011) 10994-11003;(c) S.M. Zhang, T.L. Hu, J.L. Du, X.H. Bu, Tuning the formation of copper(I) coordination architectures with quinoxaline-based N,S-donor ligands by varying terminal groups of ligands and reaction temperature, Inorg. Chim. Acta 362 (2009) 3915-3924.
-
[22]
[22] (a) G.X. Liu, H. Xu, H. Zhou, S. Nishiharab, X.M. Ren, Temperature-induced assembly of MOF polymorphs: syntheses, structures and physical properties, CrystEngComm 14 (2012) 1856-1864.
-
[23]
[23] L.L. Liu, L. Liu, J.J. Wang, Solvent-and temperature-driven synthesis of three Cd(II) coordination polymers based on 3,3'-azodibenzoic acid ligand: crystal structures and luminescent properties, Inorg. Chim. Acta 397 (2013) 75-82.
-
[24]
[24] G.F. Hou, L.H. Bi, B. Li, L.X. Wu, Reaction controlled assemblies of polyoxotungstates(-molybdates) and coordination polymers, Inorg. Chem. 49 (2010) 6474-6483.
-
[25]
[25] (a) J.P. Ma, Y.B. Dong, R.Q. Huang, M.D. Smith, C.Y. Su, Spontaneously resolved chiral three-fold interpenetrating diamondoidlike Cu(II) coordination polymers with temperature-driven crystal-to-crystal transformation, Inorg. Chem. 44 (2005) 6143-6145;(b) L.Z. Zhang, W. Gu, Z.L. Dong, X. Liu, B. Li, Phase transformation of a rare-earth Anderson polyoxometalate at low temperature, CrystEngComm 10 (2008) 1318-1320.
-
[26]
[26] (a) J.J. Vittal, Supramolecular structural transformations involving coordination polymers in the solid state, Coord. Chem. Rev. 251 (2007) 1781-1795;(b) X.N. Cheng, W.X. Zhang, X.M. Chen, Single crystal-to-single crystal transformation from ferromagnetic discrete molecules to a spin-canting antiferromagnetic layer, J. Am. Chem. Soc. 129 (2007) 15738-15739;(c) M. Nagarathinam, J.J. Vittal, Anisotropic movements of coordination polymers upon desolvation: solid-state transformation of a linear 1D coordination polymer to a ladderlike structure, Angew. Chem. Int. Ed. 45 (2006) 4337-4341.
-
[27]
[27] (a) J.P. Zhang, Y.Y. Lin, W.X. Zhang, X.M. Chen, Temperature-or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer, J. Am. Chem. Soc. 127 (2005) 14162-14163;(b) L. Pan, H. Liu, X. Lei, et al., RPM-1: a recyclable nanoporous material suitable for ship-in-bottle synthesis and large hydrocarbon sorption, Angew. Chem. Int. Ed. 42 (2003) 542-546;(c) M.P. Suh, H.R. Moon, E.Y. Lee, S.Y. Jang, A redox-active two-dimensional coordination polymer: preparation of silver and gold nanoparticles and crystal dynamics on guest removal, J. Am. Chem. Soc. 128 (2006) 4710-4718.
-
[28]
[28] J. Li, P. Huang, X.R. Wu, et al., Metal-organic frameworks displaying single crystalto-single crystal transformation through postsynthetic uptake of metal clusters, Chem. Sci. 4 (2013) 3232-3238.
-
[29]
[29] (a) P.S. Mukherjee, N. Lopez, A.M. Arif, F. Cervantes-Lee, J.C. Noveron, Singlecrystal to single-crystal phase transitions of bis(N-phenylisonicotinamide)silver( I) nitrate reveal cooperativity properties in porous molecular materials, Chem. Commun. 14 (2007) 1433-1435;(b) M.H. Mir, J.J. Vittal, Single-crystal to single-crystal transformation of cyclic water heptamer to another (H2O)7 cluster containing cyclic pentamer, Cryst. Growth Des. 8 (2008) 1478-1480.
-
[30]
[30] H. Konaka, L.P. Wu, M. Munakata, et al., Syntheses and structures of photochromic silver(I) coordination polymers with cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene, Inorg. Chem. 42 (2003) 1928-1934.
-
[31]
[31] (a) D.K. Kumar, D.A. Jose, A. Das, P. Dastidar, From diamondoid network to (4,4) net: effect of ligand topology on the supramolecular structural diversity, Inorg. Chem. 44 (2005) 6933-6935;(b) S. Yahyaoui, W. Rekik, H. Naili, T. Mhiri, T. Bataille, Synthesis, crystal structures, phase transition characterization and thermal decomposition of a new dabcodiium hexaaquairon(II) bis(sulfate): (C6H14N2)[Fe(H2O)6](SO4)2, J. Solid State Chem. 180 (2007) 3560-3570;(c) G. Mahmoudi, A. Morsali, Crystal-to-crystal transformation from a weak hydrogen-bonded two-dimensional network structure to a two-dimensional coordination polymer on heating, Cryst. Growth Des. 8 (2008) 391-394;(d) N.L. Toh, M. Nagarathinam, J.J. Vittal, Topochemical photodimerization in the coordination polymer [{(CF3CO2)(μ-O2CCH3)Zn}2(μ-bpe)2]n through singlecrystal to single-crystal transformation, Angew. Chem. Ent. Ed. 44 (2005) 2237-2241.
-
[32]
[32] (a) C.D. Wu, W.B. Lin, Highly porous, homochiral metal-organic frameworks: solvent-exchange-induced single-crystal to single-crystal transformations, Angew. Chem. Int. Ed. 44 (2005) 1958-1961;(b) T.K. Maji, G. Mostafa, R. Matsuda, S. Kitagawa, Guest-induced asymmetry in a metal-organic porous solid with reversible single-crystal-to-single-crystal structural transformation, J. Am. Chem. Soc. 127 (2005) 17152-17153;(c) J. Sun, F.N. Dai, W.B. Yuan, et al., Dimerization of a metal complex through thermally induced single-crystal-to-single-crystal transformation or mechanochemical reaction, Angew. Chem. Int. Ed. 50 (2011) 7061-7064.
-
[33]
[33] K.L. Gurunatha, G. Mostafa, D. Ghoshal, T.K. Maji, Single-crystal-to-single-crystal structural transformation in a three-dimensional bimetallic (4f-3d) supramolecular porous framework, Cryst. Growth Des. 10 (2010) 2483-2489.
-
[34]
[34] X.F. Wang, Y. Wang, Y.B. Zhang, et al., Layer-by-layer evolution and a hysteretic single-crystal to single-crystal transformation cycle of a flexible pillared-layer open framework, Chem. Commun. 48 (2012) 133-135.
-
[35]
[35] (a) S. Kitagawa, K. Uemura, Dynamic porous properties of coordination polymers inspired by hydrogen bonds, Chem. Soc. Rev. 34 (2005) 109-119;(b) D. Bradshaw, J.E. Warren, M.J. Rosseinsky, Reversible concerted ligand substitution at alternating metal sites in an extended solid, Science 315 (2007) 977-980;(c) D.N. Dybtsev, H. Chun, K. Kim, Rigid and flexible: a highly porous metalorganic framework with unusual guest-dependent dynamic behavior, Angew. Chem. Ent. Ed. 43 (2004) 5033-5036.
-
[36]
[36] D. Sarma, S. Natarajan, Usefulness of in situ single crystal to single crystal transformation (SCSC) studies in understanding the temperature-dependent dimensionality cross-over and structural reorganization in copper-containing metal-organic frameworks (MOFs), Cryst. Growth Des. 11 (2011) 5415-5423.
-
[37]
[37] X.J. Hong, M.F. Wang, H.G. Jin, et al., Single-crystal to single-crystal transformation from a 1-D chain-like structure to a 2-D coordination polymer on heating, CrystEngComm 15 (2013) 5606-5611.
-
[1]
-
-
-
[1]
Xiaoyan Peng , Xuanhao Wu , Fan Yang , Yefei Tian , Mingming Zhang , Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251
-
[2]
Peng Meng , Qian-Cheng Luo , Aidan Brock , Xiaodong Wang , Mahboobeh Shahbazi , Aaron Micallef , John McMurtrie , Dongchen Qi , Yan-Zhen Zheng , Jingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542
-
[3]
Yu-Yao Li , Xiao-Hui Li , Zhi-Xuan An , Yang Chu , Xiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716
-
[4]
Yin-Hang Chai , Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322
-
[5]
Qiaojia GUO , Junkai CAI , Chunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209
-
[6]
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
-
[7]
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
-
[8]
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
-
[9]
Kang Wang , Qinglin Zhou , Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325
-
[10]
Genlin Sun , Yachun Luo , Zhihong Yan , Hongdeng Qiu , Weiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787
-
[11]
Guoying Han , Qazi Mohammad Junaid , Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447
-
[12]
Cheng-Shuang Wang , Bing-Yu Zhou , Yi-Feng Wang , Cheng Yuan , Bo-Han Kou , Wei-Wei Zhao , Jing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080
-
[13]
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
-
[14]
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
-
[15]
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
-
[16]
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
-
[17]
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
-
[18]
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
-
[19]
Xue-Zhi Wang , Yi-Tong Liu , Chuang-Wei Zhou , Bei Wang , Dong Luo , Mo Xie , Meng-Ying Sun , Yong-Liang Huang , Jie Luo , Yan Wu , Shuixing Zhang , Xiao-Ping Zhou , Dan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380
-
[20]
Cheng Cheng , Nasir Ali , Ji Liu , Juan Qiao , Ming Wang , Li Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(761)
- HTML views(13)