Citation: Ying-Xia Wang, Tie-Hong Chen. A high dispersed Pt0.35Pd0.35Co0.30/C as superior catalyst for methanol and formic acid electro-oxidation[J]. Chinese Chemical Letters, ;2014, 25(6): 907-911. doi: 10.1016/j.cclet.2014.04.031 shu

A high dispersed Pt0.35Pd0.35Co0.30/C as superior catalyst for methanol and formic acid electro-oxidation

  • Corresponding author: Tie-Hong Chen, 
  • Received Date: 4 March 2014
    Available Online: 8 April 2014

    Fund Project: This work was supported by NSFC (No. 21373116) (No. 21373116) Tianjin Natural Science Research Fund (No. 13JCYBJC18300) (No. 13JCYBJC18300) RFDP (No. 20120031110005) (No. 20120031110005)MOE Innovation Team of China (No. IRT13022). (No. IRT13022)

  • Pt:Pd:Co ternary alloy nanoparticles were synthesized by sodium borohydride reduction under nitrogen, and were supported on carbon black as catalysts for methanol and formic acid electro-oxidation. Compared with Pt0.65Co0.30/C, Pt/C, Pd0.65Co0.30/C, and Pd/C catalyst, Pt0.35Pd0.35Co0.30/C exhibited relatively high durability and strong poisoning resistance, and the Pt-mass activity was 3.6 times higher than that of Pt/C in methanol oxidation reaction. Meanwhile, the Pt0.35Pd0.35Co0.30/C exhibited excellent activity with higher current density and higher CO tolerance than that of Pt0.65Co0.30/C, Pt/C, Pd0.65Co0.30/C, and Pd/C in formic acid electro-oxidation.
  • 加载中
    1. [1]

      [1] S. Strnivasan, R. Mosdale, P. Stevens, C. Yang, Fuel cells: reaching the era of clean and efficient power generation in the twenty-first century, Ann. Rev. Energy Environ. 24 (1999) 281-328.

    2. [2]

      [2] S.J. Guo, S. Zhang, S.H. Sun, Tuning nanoparticle catalysis for the oxygen reduction reaction, Angew. Chem. Int. Ed. 52 (2013) 8526-8544.

    3. [3]

      [3] S. Strnivasan, Fuel Cells: From Fundamentals to Applications, Springer, New York, 2006.

    4. [4]

      [4] Y.H. Bing, H.S. Liu, L. Zhang, D. Ghosh, J.J. Zhang, Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction, Chem. Soc. Rev. 39 (2010) 2184-2201.

    5. [5]

      [5] S.J. Yoo, T.Y. Jeon, K.S. Kim, T.H. Lim, Y.E. Sung, Multilayered Pt/Ru nanorods with controllable bimetallic sites as methanol oxidation catalysts, Phys. Chem. Chem. Phys. 12 (2010) 15240-15246.

    6. [6]

      [6] S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells, J. Power Sources 195 (2010) 1001-1006.

    7. [7]

      [7] J. Kugai, T. Moriya, S. Seino, et al., CeO2-supported Pt-Cu alloy nanoparticles synthesized by radiolytic process for highly selective CO oxidation, Int. J. Hydrogen Energy 37 (2012) 4787-4797.

    8. [8]

      [8] G.A. Camara, R.B. De Lima, T. lwasita, The influence of PtRu atomic composition on the yields of ethanol oxidation: a study by in situ FTIR spectroscopy, J. Electroanal. Chem. 585 (2005) 128-131.

    9. [9]

      [9] M. Nie, H.L. Tang, Z. Wei, S.P. Jiang, P.K. Shen, Highly efficient AuPd-WC/C electrocatalyst for ethanol oxidation, Electrochem. Commun. 9 (2007) 2375-2379.

    10. [10]

      [10] E. Antolini, F. Colmati, E.R. Gonzalez, Ethanol oxidation on carbon supported (PtSn)alloy/SnO2 and (PtSnPd)alloy/SnO2 catalysts with a fixed Pt/SnO2 atomic ratio: effect of the alloy phase characteristics, J. Power Sources 193 (2009) 555-561.

    11. [11]

      [11] E. Lee, I.S. Park, A. Manthiram, Synthesis and characterization of Pt-Sn-Pd/C catalysts for ethanol electro-oxidation reaction, J. Phys. Chem. C 114 (2010) 10634-10640.

    12. [12]

      [12] J. Datta, A. Dutta, S. Mukherjee, The beneficial role of the cometals Pd and Au in the carbon-supported PtPdAu catalyst toward promoting ethanol oxidation kinetics in alkaline fuel cells: temperature effect and reaction mechanism, J. Phys. Chem. C 115 (2011) 15324-15334.

    13. [13]

      [13] M. Watanabe, K. Tsurumi, T. Nakamura, T. Nakamura, P. Stonehart, Activity and stability of ordered and disordered Co-Pt alloys for phosphoric acid fuel cells, J. Electrochem. Soc. 141 (1994) 2659-2668.

    14. [14]

      [14] E. Antolini, J.R.C. Salaado, E.R. Gonzalez, The stability of Pt-M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: a literature review and tests on a Pt-Co catalyst, J. Power Sources 160 (2006) 957-968.

    15. [15]

      [15] V. Mazumder, M. Chi, M.N. Mankin, et al., A facile synthesis of MPd (M=Co, Cu) nanoparticles and their catalysis for formic acid oxidation, Nano Lett. 12 (2012) 1102-1106.

    16. [16]

      [16] S.K. Singh, Q. Xu, Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage, J. Am. Chem. Soc. 131 (2009) 18032-18033.

    17. [17]

      [17] D. Sun, V. Mazumder, O. Metin, S.H. Sun, Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles, ACS Nano 5 (2011) 6458-6464.

    18. [18]

      [18] C. Wang, M. Chi, D. Li, et al., Synthesis of homogeneous Pt-bimetallic nanoparticles as highly efficient electrocatalysts, ACS Catal. 1 (2011) 1355-1359.

    19. [19]

      [19] E. Bertin, S. Garbarino, A. Ponrouch, D. Guay, Synthesis and characterization of PtCo nanowires for the electro-oxidation of methanol, J. Power Sources 206 (2012) 20-28.

    20. [20]

      [20] B.M. Luo, X.B. Yan, S. Xu, Q.J. Xue, synthesis of worμ-like PtCo nanotubes for methanol oxidation, Electrochem. Commun. 30 (2013) 71-74.

    21. [21]

      [21] H. Zhao, L. Pan, J. Jin, L. Li, J. Xu, PtCo/polypyrrole-multiwalled carbon nanotube complex cathode catalyst containing two types of oxygen reduction active sites used in direct methanol fuel cells, Fuel Cell 12 (2012) 876-882.

    22. [22]

      [22] H.J. Huang, Y. Fan, X. Wang, Low-defect multi-walled carbon nanotubes supported PtCo alloy nanoparticles with remarkable performance for electrooxidation of methanol, Electrochim. Acta 80 (2012) 118-125.

    23. [23]

      [23] O.N. Senkov, D.B. Miracle, Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys, Mater. Res. Bull. 36 (2001) 2183-2198.

    24. [24]

      [24] A.P. Tsai, A test of Hume-Rothery rules for stable quasicrystals, J. Non-Cryst. Solids 334 (2004) 317-322.

    25. [25]

      [25] J.W. Hong, D. Kim, Y.W. Lee, et al., Atomic-distribution-dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals, Angew. Chem. Int. Ed. 50 (2011) 8876-8880.

    26. [26]

      [26] G. Giovannetti, P.A. Khomyakov, G. Brocks, et al., Doping graphene with metal contacts, Phys. Rev. Lett. 101 (2008) 026803(1)-026803(4).

    27. [27]

      [27] R. Larsen, S. Ha, J. Zakzeski, R.I. Masel, Unusually active palladiuμ-based catalysts for the electrooxidation of formic acid, J. Power Sources 157 (2006) 78-84.

    28. [28]

      [28] Y. Lu, W. Chen, Nanoneedle-covered Pd-Ag nanotubes: high electrocatalytic activity for formic acid oxidation, J. Phys. Chem. C 114 (2010) 21190-21200.

  • 加载中
    1. [1]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    2. [2]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    3. [3]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    4. [4]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    5. [5]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    6. [6]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    7. [7]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    8. [8]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    9. [9]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    10. [10]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    11. [11]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    12. [12]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    13. [13]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    14. [14]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    15. [15]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    16. [16]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    17. [17]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    18. [18]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    19. [19]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    20. [20]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

Metrics
  • PDF Downloads(0)
  • Abstract views(635)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return