Citation: Fei Tang, Yi Chen, Tie-Gang Li, Jiu-Ming He, Zeper Abliz, Gang Huang, Xiao-Hao Wang. A quick and effective multivariate statistical strategy for imaging mass spectrometry[J]. Chinese Chemical Letters, ;2014, 25(10): 1331-1335. doi: 10.1016/j.cclet.2014.04.028 shu

A quick and effective multivariate statistical strategy for imaging mass spectrometry

  • Corresponding author: Xiao-Hao Wang, 
  • Received Date: 18 February 2014
    Available Online: 9 April 2014

    Fund Project:

  • A new multivariate statistical strategy for analyzing large datasets that are produced by imaging mass spectrometry (IMS) techniques is reported. The strategy divides the whole datacube of the sample into several subsets and analyses them one by one to obtain the results. Instead of analyzing the whole datacube at one time, the strategy makes the analysis easier and decreases the computation time greatly. In this report, the IMS data are produced by the air flow-assisted ionization IMS (AFAI-IMS). The strategy can be used in combination with most multivariate statistical analysis methods. In this paper, the strategy was combined with the principal component analysis (PCA) and partial least square analysis (PLS). It was proven to be effective by analyzing the handwriting sample. By using the strategy, the m/z corresponding to the specific lipids in rat brain tissue were distinguished successfully. Moreover the analysis time grew linearly instead of exponentially as the size of sample increased. The strategy developed in this study has enormous potential for searching for the m/z of potential biomarkers quickly and effectively.
  • 加载中
    1. [1]

      [1] L.A. McDonnell, R.M.A. Heeren, Imaging mass spectrometry, Mass Spectrom. Rev. 26 (2007) 606-643.

    2. [2]

      [2] S. Shimma, M. Setou, Review of imaging mass spectrometry, J. Mass Spectrom. Soc. Jpn. 53 (2005) 230-238.

    3. [3]

      [3] L.S. Eberlin, A.L. Dill, A.J. Golby, et al., Discrimination of human astrocytoma subtypes by lipid analysis using desorption electrospray ionization imaging mass spectrometry, Angew. Chem. Int. Ed. Engl. 49 (2010) 5953-5956.

    4. [4]

      [4] P.H. Pevsner, J. Melamed, T. Remsen, et al., Mass spectrometry MALDI imaging of colon cancer biomarkers: a new diagnostic paradigm, Biomakers Med. 3 (2009) 55-69.

    5. [5]

      [5] E.H. Seeley, R.M. Caprioli, MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives, Trends Biotechnol. 29 (2011) 136-143.

    6. [6]

      [6] S.A. Schwartz, M.L. Reyzer, R.M. Caprioli, Direct tissue analysis using matrixassisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation, J. Mass Spectrom. 38 (2003) 699-708.

    7. [7]

      [7] R.M. Caprioli, T.B. Farmer, J. Gile, Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS, Anal. Chem. 23 (1997) 4751-4760.

    8. [8]

      [8] R.I. Demian, M.W. Justin, Q. Song, R.G. Cooks, Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI), Int. J. Mass Spectrom. 259 (2007) 8-15.

    9. [9]

      [9] Z.G. Luo, J.M. He, Y.J. Chen, et al., Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions, Anal. Chem. 85 (2013) 2977-2982.

    10. [10]

      [10] J.M. Fonville, C. Carter, O. Cloarec, et al., Robust data processing and normalization strategy for MALDI mass spectrometric imaging, Anal. Chem. 84 (2012) 1310-1319.

    11. [11]

      [11] D. Trede, J.H. Kobarg, J. Oetjen, et al., On the importance of mathematical methods for analysis of MALDI-imaging mass spectrometry data, J. Integr. Bioinform. 9 (2012) 189.

    12. [12]

      [12] E.A. Jones, A. Remoortere, R.J.M. Zeijl, et al., Multiple statistical analysis techniques corroborate intratumor heterogeneity in imaging mass spectrometry datasets of myxofibrosarcoma, PLoS ONE 6 (2011) 1-14.

    13. [13]

      [13] W. Reindl, B.P. Bowen, M.A. Balamotis, J.E. Greenc, T.R. Northen, Multivariate analysis of a 3D mass spectral image for examining tissue heterogeneity, Integr. Biol. 3 (2011) 460-467.

    14. [14]

      [14] B.J. Tylera, G. Rayala, D.G. Castner, Multivariate analysis strategies for processing ToF-SIMS images of biomaterials, Biomaterials 28 (2007) 2412-2423.

    15. [15]

      [15] V.S. Smentkowski, S.G. Ostrowski, F. Kollmer, et al., Multivariate statistical analysis of non-mass-selected ToF-SIMS data, Surf. Interface Anal. 40 (2008) 1176-1182.

    16. [16]

      [16] A.L. Dill, L.S. Eberlin, C. Zheng, et al., Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry, Anal. Bioanal. Chem. 398 (2010) 2969-2978.

    17. [17]

      [17] Z.Z. Pan, H.W. Gu, N. Talaty, et al., Principal component analysis of urine metabolites detected by NMR and DESI-MS in patients with inborn errors of metabolism, Anal. Bioanal. Chem. 387 (2007) 539-549.

    18. [18]

      [18] H.W. Gu, Z.Z. Pan, B.W. Xi, et al., Principal component directed partial least squares analysis for combining NMR and MS data in metabolomics: application to the detection of breast cancer, Anal. Chim. Acta 686 (2011) 57-63.

    19. [19]

      [19] D. Bonnel, R. Longuespee, J. Franck, et al., Multivariate analyses for biomarkers hunting and validation through on-tissue bottom-up or in-source decay in MALDI-MSI: application to prostate cancer, Anal. Bioanal. Chem. 401 (2011) 149-165.

    20. [20]

      [20] V. Pirro, L.S. Eberlin, P. Oliveric, R.G. Cooks, Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections, Analyst 137 (2012) 2374-2380.

    21. [21]

      [21] L.S. Eberlin, A.L. Dill, A.B. Costa, et al., Cholesterol sulfate imaging in human prostate cancer tissue by desorption electrospray ionization mass spectrometry, Anal. Chem. 82 (2010) 3430-3434.

    22. [22]

      [22] J.M. Wiseman, D.R. Ifa, Y.X. Zhu, et al., Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues, Natl. Acad. Sci. 105 (2008) 18120-18125.

    23. [23]

      [23] J.M. He, F. Tang, Z.G. Luo, et al., Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application, Rapid Commun. Mass Spectrom. 25 (2011) 843-850.

    24. [24]

      [24] R. Sekar, S.K. Kailasa, Y.C. Chen, H.F. Wu, Electrospray ionization tandem mass spectrometric studies to probe the interaction of Cu(Ⅱ) with amoxicillin, Chin. Chem. Lett. 25 (2014) 39-45.

    25. [25]

      [25] F. Tang, Y. Chen, J.M. He, et al., Design and performance of air flow-assisted ionization imaging mass spectrometry system, Chin. Chem. Lett. (2014), http:// dx.doi.org/10.1016/j.cclet.2014.01.046.

  • 加载中
    1. [1]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    2. [2]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    3. [3]

      Keqiang ShiXiujuan HongDongyan XuTao PanHuiwen WangHongru FengCheng GuoYuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079

    4. [4]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    5. [5]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    6. [6]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    7. [7]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    8. [8]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    9. [9]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    10. [10]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    11. [11]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    12. [12]

      Xiaoxiao WangBolun WangFenfen JiJie YanJiacheng FangDoudou ZhangJi XuJing JiXinran HaoHemi LuanYanjun HongShulan QiuMin LiZhu YangWenlan LiuXiaodong CaiZongwei Cai . Discovery of plasma biomarkers for Parkinson’s disease diagnoses based on metabolomics and lipidomics. Chinese Chemical Letters, 2024, 35(11): 109653-. doi: 10.1016/j.cclet.2024.109653

    13. [13]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    14. [14]

      Yinghui Xia Yixi Lin Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448

    15. [15]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    16. [16]

      Shaoqing DuXinyong LiuXueping HuPeng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378

    17. [17]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    18. [18]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    19. [19]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    20. [20]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

Metrics
  • PDF Downloads(0)
  • Abstract views(658)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return